中文版 | English
题名

Tolerating Device-to-Device Variation for Memristive Crossbar-Based Neuromorphic Computing Systems: A New Bayesian Perspective

作者
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-8868-6
会议录名称
页码
1-7
会议日期
18-23 June 2023
会议地点
Gold Coast, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Memristive crossbar-based architecture provides an energy-efficient platform to accelerate neural networks (NNs) thanks to its Processing-in-Memory (PIM) nature. However, the device-to-device variation (DDV), which is typically modeled as Lognormal distribution, deviates the programmed weights from their target values, resulting in significant performance degradation. This paper proposes a new Bayesian Neural Network (BNN) approach to enhance the robustness of weights against DDV. Instead of using the widely-used Gaussian variational posterior in conventional BNNs, our approach adopts a DDV-specific variational posterior distribution, i.e., Lognormal distribution. Accordingly, in the new BNN approach, the prior distribution is modified to keep consistent with the posterior distribution to avoid expensive Monte Carlo simulations. Furthermore, the mean of the prior distribution is dynamically adjusted in accordance with the mean of the Lognormal variational posterior distribution for better convergence and accuracy. Compared with the state-of-the-art approaches, experimental results show that the proposed new BNN approach can significantly boost the inference accuracy with the consideration of DDV on several well-known datasets and modern NN architectures. For example, the inference accuracy can be improved from 18% to 74% in the scenario of ResNet-18 on CIFAR-10 even under large variations.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
National Natural Science Foundation of China["61976111","62250710682","62141415"] ; Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198703030
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191448
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553197
专题工学院_计算机科学与工程系
工学院_深港微电子学院
作者单位
1.Research Institute of Trustworthy Autonomous System (RITAS), Southern University of Science and Technology (SUSTech), Shenzhen, China
2.School of Microelectronics, University of Science and Technology of China (USTC)
3.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology (SUSTech), Shenzhen, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Yang Xiao,Qi Xu,Bo Yuan. Tolerating Device-to-Device Variation for Memristive Crossbar-Based Neuromorphic Computing Systems: A New Bayesian Perspective[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-7.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang Xiao]的文章
[Qi Xu]的文章
[Bo Yuan]的文章
百度学术
百度学术中相似的文章
[Yang Xiao]的文章
[Qi Xu]的文章
[Bo Yuan]的文章
必应学术
必应学术中相似的文章
[Yang Xiao]的文章
[Qi Xu]的文章
[Bo Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。