题名 | Tolerating Device-to-Device Variation for Memristive Crossbar-Based Neuromorphic Computing Systems: A New Bayesian Perspective |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-8868-6
|
会议录名称 | |
页码 | 1-7
|
会议日期 | 18-23 June 2023
|
会议地点 | Gold Coast, Australia
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Memristive crossbar-based architecture provides an energy-efficient platform to accelerate neural networks (NNs) thanks to its Processing-in-Memory (PIM) nature. However, the device-to-device variation (DDV), which is typically modeled as Lognormal distribution, deviates the programmed weights from their target values, resulting in significant performance degradation. This paper proposes a new Bayesian Neural Network (BNN) approach to enhance the robustness of weights against DDV. Instead of using the widely-used Gaussian variational posterior in conventional BNNs, our approach adopts a DDV-specific variational posterior distribution, i.e., Lognormal distribution. Accordingly, in the new BNN approach, the prior distribution is modified to keep consistent with the posterior distribution to avoid expensive Monte Carlo simulations. Furthermore, the mean of the prior distribution is dynamically adjusted in accordance with the mean of the Lognormal variational posterior distribution for better convergence and accuracy. Compared with the state-of-the-art approaches, experimental results show that the proposed new BNN approach can significantly boost the inference accuracy with the consideration of DDV on several well-known datasets and modern NN architectures. For example, the inference accuracy can be improved from 18% to 74% in the scenario of ResNet-18 on CIFAR-10 even under large variations. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China["61976111","62250710682","62141415"]
; Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:001046198703030
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191448 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553197 |
专题 | 工学院_计算机科学与工程系 工学院_深港微电子学院 |
作者单位 | 1.Research Institute of Trustworthy Autonomous System (RITAS), Southern University of Science and Technology (SUSTech), Shenzhen, China 2.School of Microelectronics, University of Science and Technology of China (USTC) 3.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology (SUSTech), Shenzhen, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yang Xiao,Qi Xu,Bo Yuan. Tolerating Device-to-Device Variation for Memristive Crossbar-Based Neuromorphic Computing Systems: A New Bayesian Perspective[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-7.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论