中文版 | English
题名

A Comprehensive Study of Real-World Bugs in Machine Learning Model Optimization

作者
通讯作者Liu, Yepang; Bai, Guangdong
DOI
发表日期
2023
会议名称
45th IEEE/ACM International Conference on Software Engineering (ICSE)
ISSN
0270-5257
ISBN
978-1-6654-5702-6
会议录名称
页码
147-158
会议日期
MAY 14-20, 2023
会议地点
null,Melbourne,AUSTRALIA
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要

Due to the great advance in machine learning (ML) techniques, numerous ML models are expanding their application domains in recent years. To adapt for resource-constrained platforms such as mobile and Internet of Things (IoT) devices, pre-trained models are often processed to enhance their efficiency and compactness, using optimization techniques such as pruning and quantization. Similar to the optimization process in other complex systems, e.g., program compilers and databases, optimizations for ML models can contain bugs, leading to severe consequences such as system crashes and financial loss. While bugs in training, compiling and deployment stages have been extensively studied, there is still a lack of systematic understanding and characterization of model optimization bugs (MOBs). In this work, we conduct the first empirical study to identify and characterize MOBs. We collect a comprehensive dataset containing 371 MOBs from TensorFlow and PyTorch, the most extensively used open-source ML frameworks, covering the entire development time span of their optimizers (May 2019 to August 2022). We then investigate the collected bugs from various perspectives, including their symptoms, root causes, life cycles, detection and fixes. Our work unveils the status quo of MOBs in the wild, and reveals their features on which future detection techniques can be based. Our findings also serve as a warning to the developers and the users of ML frameworks, and an appeal to our research community to enact dedicated countermeasures.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key Research and Development Program of China[2019YFE0198100] ; National Natural Science Foundation of China[61932021]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:001032629800015
EI入藏号
20233914775177
EI主题词
Constrained Optimization ; Internet Of Things ; Life Cycle ; Losses ; Machine Learning ; Program Debugging
EI分类号
Data Communication, Equipment And Techniques:722.3 ; Computer Software, Data HAndling And Applications:723 ; Computer Programming:723.1 ; Artificial Intelligence:723.4 ; Industrial Economics:911.2 ; Systems Science:961
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10172690
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553202
专题南方科技大学
作者单位
1.SUSTech & UQ
2.Southern Univ Sci & Technol, Shenzhen, Peoples R China
3.Microsoft Software Technol Ctr Asia, Beijing, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Guan, Hao,Xiao, Ying,Li, Jiaying,et al. A Comprehensive Study of Real-World Bugs in Machine Learning Model Optimization[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:147-158.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guan, Hao]的文章
[Xiao, Ying]的文章
[Li, Jiaying]的文章
百度学术
百度学术中相似的文章
[Guan, Hao]的文章
[Xiao, Ying]的文章
[Li, Jiaying]的文章
必应学术
必应学术中相似的文章
[Guan, Hao]的文章
[Xiao, Ying]的文章
[Li, Jiaying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。