中文版 | English
题名

Cross-Domain Few-Shot Relation Extraction via Representation Learning and Domain Adaptation

作者
通讯作者Zhenkun Wang
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-8868-6
会议录名称
卷号
2023-June
页码
1-8
会议日期
18-23 June 2023
会议地点
Gold Coast, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Few-shot relation extraction aims to recognize novel relations with few labeled sentences in each relation. Previous metric-based few-shot relation extraction algorithms identify relationships by comparing the prototypes generated by the few labeled sentences embedding with the embeddings of the query sentences using a trained metric function. However, as these domains always have considerable differences from those in the training dataset, the generalization ability of these approaches on unseen relations in many domains is limited. Since the prototype is necessary for obtaining relationships between entities in the latent space, we suggest learning more interpretable and efficient prototypes from prior knowledge and the intrinsic semantics of relations to extract new relations in various domains more effectively. By exploring the relationships between relations using prior information, we effectively improve the prototype representation of relations. By using contrastive learning to make the classification margins between sentence embedding more distinct, the prototype's geometric interpretability is enhanced. Additionally, utilizing a transfer learning approach for the cross-domain problem allows the generation process of the prototype to account for the gap between other domains, making the prototype more robust and enabling the better extraction of associations across multiple domains. The experiment results on the benchmark FewRel dataset demonstrate the advantages of the suggested method over some state-of-the-art approaches.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198706031
EI入藏号
20233614678873
EI主题词
Extraction ; Semantics
EI分类号
Artificial Intelligence:723.4 ; Chemical Operations:802.3
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191836
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553204
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
第一作者单位系统设计与智能制造学院
通讯作者单位系统设计与智能制造学院;  计算机科学与工程系
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Zhongju Yuan,Zhenkun Wang,Genghui Li. Cross-Domain Few-Shot Relation Extraction via Representation Learning and Domain Adaptation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhongju Yuan]的文章
[Zhenkun Wang]的文章
[Genghui Li]的文章
百度学术
百度学术中相似的文章
[Zhongju Yuan]的文章
[Zhenkun Wang]的文章
[Genghui Li]的文章
必应学术
必应学术中相似的文章
[Zhongju Yuan]的文章
[Zhenkun Wang]的文章
[Genghui Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。