题名 | Partially-Labeled Domain Generalization via Multi-Dimensional Domain Adaptation |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | International Joint Conference on Neural Networks (IJCNN)
|
ISSN | 2161-4393
|
ISBN | 978-1-6654-8868-6
|
会议录名称 | |
卷号 | 2023-June
|
页码 | 1-8
|
会议日期 | 18-23 June 2023
|
会议地点 | Gold Coast, Australia
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Domain generalization deals with a challenging setting where several labeled source domains are given, and the goal is to train machine learning models that can generalize to an unseen test domain. However, in practice, labeled samples are often difficult and expensive to obtain. Thus the source domains would not always be labeled. When only some source domains are labeled and others are unlabeled, we formally introduce this domain generalization problem as Partially-Labeled Domain Generalization (PLDG). In this paper, we study the most challenging setting in PLDG problems, where only one source domain is labeled and a few unlabeled source domains are available. To enable generalization, we assume that all source domains follow certain domain index information that can reflect their domain relationships. With this domain index information, we propose a Multi-Dimensional Domain Adaptation (MDDA) method to address this PLDG problem. Specifically, the MDDA method first trains multiple domain adaptation models to adapt from the labeled source domain to all the unlabeled source domains via adversarial learning. Then those domain adaptation models and the source-only model trained on the labeled source domain only are distilled into the target model used for the unseen target domain. Theoretically, we provide a generalization bound of the MDDA method. The experiments on four real-world datasets demonstrate the effectiveness of the proposed MDDA method. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
资助项目 | NSFC[62136005]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:001046198703111
|
EI入藏号 | 20233614678582
|
EI主题词 | Learning systems
|
EI分类号 | Chemical Operations:802.3
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191532 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553209 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology 2.School of Information Science and Engineering, Southeast University |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Feiyang Ye,Jianghan Bao,Yu Zhang. Partially-Labeled Domain Generalization via Multi-Dimensional Domain Adaptation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-8.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论