中文版 | English
题名

Partially-Labeled Domain Generalization via Multi-Dimensional Domain Adaptation

作者
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-8868-6
会议录名称
卷号
2023-June
页码
1-8
会议日期
18-23 June 2023
会议地点
Gold Coast, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Domain generalization deals with a challenging setting where several labeled source domains are given, and the goal is to train machine learning models that can generalize to an unseen test domain. However, in practice, labeled samples are often difficult and expensive to obtain. Thus the source domains would not always be labeled. When only some source domains are labeled and others are unlabeled, we formally introduce this domain generalization problem as Partially-Labeled Domain Generalization (PLDG). In this paper, we study the most challenging setting in PLDG problems, where only one source domain is labeled and a few unlabeled source domains are available. To enable generalization, we assume that all source domains follow certain domain index information that can reflect their domain relationships. With this domain index information, we propose a Multi-Dimensional Domain Adaptation (MDDA) method to address this PLDG problem. Specifically, the MDDA method first trains multiple domain adaptation models to adapt from the labeled source domain to all the unlabeled source domains via adversarial learning. Then those domain adaptation models and the source-only model trained on the labeled source domain only are distilled into the target model used for the unseen target domain. Theoretically, we provide a generalization bound of the MDDA method. The experiments on four real-world datasets demonstrate the effectiveness of the proposed MDDA method.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
NSFC[62136005]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198703111
EI入藏号
20233614678582
EI主题词
Learning systems
EI分类号
Chemical Operations:802.3
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191532
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553209
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology
2.School of Information Science and Engineering, Southeast University
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Feiyang Ye,Jianghan Bao,Yu Zhang. Partially-Labeled Domain Generalization via Multi-Dimensional Domain Adaptation[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Feiyang Ye]的文章
[Jianghan Bao]的文章
[Yu Zhang]的文章
百度学术
百度学术中相似的文章
[Feiyang Ye]的文章
[Jianghan Bao]的文章
[Yu Zhang]的文章
必应学术
必应学术中相似的文章
[Feiyang Ye]的文章
[Jianghan Bao]的文章
[Yu Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。