中文版 | English
题名

A Brain-inspired Fully Hardware Hopfield Neural Network based on Memristive Arrays

作者
DOI
发表日期
2023
会议名称
International Joint Conference on Neural Networks (IJCNN)
ISSN
2161-4393
ISBN
978-1-6654-8868-6
会议录名称
页码
1-10
会议日期
18-23 June 2023
会议地点
Gold Coast, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In this work, we propose a fully hardware implementation of Hopfield neural network (HNN) based on memristive arrays, which adopts a bottom-up brain-inspired hardware framework. Memristors are used as key computing units to design cell modules in the low layer to play roles similar to neurons and synapses, so as to perform information integration, filtering, and plasticity of weights in a simple circuit structure and in-memory computing way. Cell modules are cascaded by the mode of encoding and mapping based on HNN in a structured regular circuit way to construct functional modules with brain-inspired parallel analog computing capacity in middle layers. Different functional modules perform information interaction according to the system's requirements and goals, thus realizing the overall system in the top layer. Our proposed HNN system is then used to solve combinatorial optimization problems. Different from other similar work, our system starts from a memristor-based brain-inspired framework and is implemented fully in hardware. The experimental results show that our work can not only improve the convergence speed, but also can be conveniently used to solve problems of different scales because of its good scalability. In addition, with hardware overhead and power consumption analysis, our system has been shown to be very hardware-friendly. Our work represents an advance towards a memristor-based hardware system with brain-inspired structure and high performance.
关键词
学校署名
第一
语种
英语
相关链接[IEEE记录]
收录类别
资助项目
Postdoctoral Science Foundation of China[2021M701578]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:001046198701080
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10191244
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553211
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zilu Wang,Xin Yao. A Brain-inspired Fully Hardware Hopfield Neural Network based on Memristive Arrays[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:1-10.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zilu Wang]的文章
[Xin Yao]的文章
百度学术
百度学术中相似的文章
[Zilu Wang]的文章
[Xin Yao]的文章
必应学术
必应学术中相似的文章
[Zilu Wang]的文章
[Xin Yao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。