中文版 | English
题名

Automated Repair of Programs from Large Language Models

作者
通讯作者Gao, Xiang
DOI
发表日期
2023
会议名称
45th IEEE/ACM International Conference on Software Engineering (ICSE)
ISSN
0270-5257
ISBN
978-1-6654-5702-6
会议录名称
页码
1469-1481
会议日期
MAY 14-20, 2023
会议地点
null,Melbourne,AUSTRALIA
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Large language models such as Codex, have shown the capability to produce code for many programming tasks. However, the success rate of existing models is low, especially for complex programming tasks. One of the reasons is that language models lack awareness of program semantics, resulting in incorrect programs, or even programs which do not compile. In this paper, we systematically study whether automated program repair (APR) techniques can fix the incorrect solutions produced by language models in LeetCode contests. The goal is to study whether APR techniques can enhance reliability in the code produced by large language models. Our study revealed that: (1) automatically generated code shares common programming mistakes with human-crafted solutions, indicating APR techniques may have potential to fix auto-generated code; (2) given bug location information provided by a statistical fault localization approach, the newly released Codex edit mode, which supports editing code, is similar to or better than existing Java repair tools TBar and Recoder in fixing incorrect solutions. By analyzing the experimental results generated by these tools, we provide several suggestions: (1) enhancing APR tools to surpass limitations in patch space (e.g., introducing more flexible fault localization) is desirable; (2) as large language models can derive more fix patterns by training on more data, future APR tools could shift focus from adding more fix patterns to synthesis/semantics based approaches, (3) combination of language models with APR to curate patch ingredients, is worth studying.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Singapore Ministry of Education (MoE) Tier 3 grant "Automated Program Repair"[MOE-MOET32021-0001] ; National Natural Science Foundation of China["61902170","62202026","62141209"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:001032629800119
EI入藏号
20233914775287
EI主题词
Automation ; Computational linguistics
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Automatic Control Principles and Applications:731
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10172854
引用统计
被引频次[WOS]:61
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553225
专题南方科技大学
作者单位
1.Natl Univ Singapore, Singapore, Singapore
2.Beihang Univ, Beijing, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Fan, Zhiyu,Gao, Xiang,Mirchev, Martin,et al. Automated Repair of Programs from Large Language Models[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2023:1469-1481.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fan, Zhiyu]的文章
[Gao, Xiang]的文章
[Mirchev, Martin]的文章
百度学术
百度学术中相似的文章
[Fan, Zhiyu]的文章
[Gao, Xiang]的文章
[Mirchev, Martin]的文章
必应学术
必应学术中相似的文章
[Fan, Zhiyu]的文章
[Gao, Xiang]的文章
[Mirchev, Martin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。