中文版 | English
题名

A Budget-aware Incentive Mechanism for Vehicle-to-Grid via Reinforcement Learning

作者
DOI
发表日期
2023
ISSN
1548-615X
ISBN
979-8-3503-9974-5
会议录名称
卷号
2023-June
页码
1-10
会议日期
19-21 June 2023
会议地点
Orlando, FL, USA
摘要
With the increasing penetration of renewable energy and electric vehicles (EVs), the behavior of EVs' charging and discharging has shown great impact on the Micro Grid power load, motivating the development of Vehicle-to-Grid (V2G) technologies. However, the V2G market is still in its infancy, due to insufficient understanding of EV users' willingness and concerns. While many studies consider direct EV control, it's more realistic to indirectly affect users' behavior through monetary incentives. For better implementation flexibility, we advocate to display at charging piles strategically chosen incentives that are combined with electricity prices. Technically, this is the first model-free learning algorithm that can optimize incentives under unknown EV user reactions, increase the load control effectiveness and users' quality-of-service (QoS) simultaneously under a long-term incentive budget, and provide theoretical performance guarantees. We first construct a bi-level optimization framework to model the time-dependencies across our solutions. We then integrate primal-dual theories and upper-confidence bounds into reinforcement learning to balance power control and incentive consumption. A dynamic programming based algorithm is also proposed to maximize the aggregate user QoS. Finally, we prove bounded sub-optimality of our learning algorithm through theoretical analysis and conduct trace-driven simulations to demonstrate the advantages of our bi-level framework.
关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
EI入藏号
20233314568247
EI主题词
Budget control ; Dynamic programming ; Electric loads ; Learning algorithms ; Power control ; Power quality ; Quality control ; Quality of service ; Vehicle-to-grid ; Vehicles
EI分类号
Electric Power Systems:706.1 ; Electric Power Distribution:706.1.2 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Specific Variables Control:731.3 ; Quality Assurance and Control:913.3 ; Optimization Techniques:921.5
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10188695
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553228
专题南方科技大学
作者单位
1.Sun Yat-sen University, Guangzhou, China
2.Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Tianxiang Zhu,Xiaoxi Zhang,Jingpu Duan,et al. A Budget-aware Incentive Mechanism for Vehicle-to-Grid via Reinforcement Learning[C],2023:1-10.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tianxiang Zhu]的文章
[Xiaoxi Zhang]的文章
[Jingpu Duan]的文章
百度学术
百度学术中相似的文章
[Tianxiang Zhu]的文章
[Xiaoxi Zhang]的文章
[Jingpu Duan]的文章
必应学术
必应学术中相似的文章
[Tianxiang Zhu]的文章
[Xiaoxi Zhang]的文章
[Jingpu Duan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。