中文版 | English
题名

Intelligent prediction methods for N-M interaction of CFST under eccentric compression

作者
通讯作者Hou, Chao
发表日期
2023-07-12
DOI
发表期刊
ISSN
1644-9665
EISSN
2083-3318
卷号23期号:3
摘要
Machine learning (ML), as a promising artificial intelligence method, gradually begins to be applied in predicting the behavior of structural members and demonstrates its superior capability in capturing the nonlinear data laws between various structural parameters and the targeted capacity. For concrete-filled steel tube (CFST) under eccentric compression, the nonlinear material confinement and the unsymmetrical loading make the application of ML methods both challenging and appealing. In this study, a comprehensive literature review is conducted to gather data from 92 reported test programs, and an experimental database consisting of 899 eccentrically loaded circular CFST samples is established. Through structural behaviors and correlation analysis of the data, input parameters for the ML models are rationally identified. Prediction models are developed using seven single ML algorithms, two ensemble ML algorithms and two reference regression methods, with their predictions compared and explained by the shapely additive explanation (SHAP) approach. Based on Monte Carlo simulation, the uncertainty quantification of predicted capacities is conducted considering four degrees of randomness. The results reveal that extreme gradient boosting (XGBoost) yields the best prediction performance, providing less than 5% prediction errors for more than 58% samples. Compared with existing capacity calculation methods for CFST under eccentric compression in design standards, the established ML models exhibit higher accuracies and wider applicable ranges.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Shenzhen Science and Technology Program[RCYX20210706092044076]
WOS研究方向
Engineering ; Materials Science
WOS类目
Engineering, Civil ; Engineering, Mechanical ; Materials Science, Multidisciplinary
WOS记录号
WOS:001027103800001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553234
专题工学院_海洋科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen 518055, Peoples R China
2.Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
第一作者单位海洋科学与工程系
通讯作者单位海洋科学与工程系
第一作者的第一单位海洋科学与工程系
推荐引用方式
GB/T 7714
Hou, Chao,Zhou, Xiao-Guang,Shen, Luming. Intelligent prediction methods for N-M interaction of CFST under eccentric compression[J]. ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING,2023,23(3).
APA
Hou, Chao,Zhou, Xiao-Guang,&Shen, Luming.(2023).Intelligent prediction methods for N-M interaction of CFST under eccentric compression.ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING,23(3).
MLA
Hou, Chao,et al."Intelligent prediction methods for N-M interaction of CFST under eccentric compression".ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING 23.3(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hou, Chao]的文章
[Zhou, Xiao-Guang]的文章
[Shen, Luming]的文章
百度学术
百度学术中相似的文章
[Hou, Chao]的文章
[Zhou, Xiao-Guang]的文章
[Shen, Luming]的文章
必应学术
必应学术中相似的文章
[Hou, Chao]的文章
[Zhou, Xiao-Guang]的文章
[Shen, Luming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。