题名 | Intelligent prediction methods for N-M interaction of CFST under eccentric compression |
作者 | |
通讯作者 | Hou, Chao |
发表日期 | 2023-07-12
|
DOI | |
发表期刊 | |
ISSN | 1644-9665
|
EISSN | 2083-3318
|
卷号 | 23期号:3 |
摘要 | Machine learning (ML), as a promising artificial intelligence method, gradually begins to be applied in predicting the behavior of structural members and demonstrates its superior capability in capturing the nonlinear data laws between various structural parameters and the targeted capacity. For concrete-filled steel tube (CFST) under eccentric compression, the nonlinear material confinement and the unsymmetrical loading make the application of ML methods both challenging and appealing. In this study, a comprehensive literature review is conducted to gather data from 92 reported test programs, and an experimental database consisting of 899 eccentrically loaded circular CFST samples is established. Through structural behaviors and correlation analysis of the data, input parameters for the ML models are rationally identified. Prediction models are developed using seven single ML algorithms, two ensemble ML algorithms and two reference regression methods, with their predictions compared and explained by the shapely additive explanation (SHAP) approach. Based on Monte Carlo simulation, the uncertainty quantification of predicted capacities is conducted considering four degrees of randomness. The results reveal that extreme gradient boosting (XGBoost) yields the best prediction performance, providing less than 5% prediction errors for more than 58% samples. Compared with existing capacity calculation methods for CFST under eccentric compression in design standards, the established ML models exhibit higher accuracies and wider applicable ranges. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Shenzhen Science and Technology Program[RCYX20210706092044076]
|
WOS研究方向 | Engineering
; Materials Science
|
WOS类目 | Engineering, Civil
; Engineering, Mechanical
; Materials Science, Multidisciplinary
|
WOS记录号 | WOS:001027103800001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553234 |
专题 | 工学院_海洋科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen 518055, Peoples R China 2.Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia |
第一作者单位 | 海洋科学与工程系 |
通讯作者单位 | 海洋科学与工程系 |
第一作者的第一单位 | 海洋科学与工程系 |
推荐引用方式 GB/T 7714 |
Hou, Chao,Zhou, Xiao-Guang,Shen, Luming. Intelligent prediction methods for N-M interaction of CFST under eccentric compression[J]. ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING,2023,23(3).
|
APA |
Hou, Chao,Zhou, Xiao-Guang,&Shen, Luming.(2023).Intelligent prediction methods for N-M interaction of CFST under eccentric compression.ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING,23(3).
|
MLA |
Hou, Chao,et al."Intelligent prediction methods for N-M interaction of CFST under eccentric compression".ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING 23.3(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论