中文版 | English
题名

How Good is Neural Combinatorial Optimization? A Systematic Evaluation on the Traveling Salesman Problem

作者
通讯作者Tang, Ke
发表日期
2023-08-01
DOI
发表期刊
ISSN
1556-603X
EISSN
1556-6048
卷号18期号:3页码:14-28
摘要

Traditional solvers for tackling combinatorial optimization (CO) problems are usually designed by human experts. Recently, there has been a surge of interest in utilizing deep learning, especially deep reinforcement learning, to automatically learn effective solvers for CO. The resultant new paradigm is termed neural combinatorial optimization (NCO). However, the advantages and disadvantages of NCO relative to other approaches have not been empirically or theoretically well studied. This work presents a comprehensive comparative study of NCO solvers and alternative solvers. Specifically, taking the traveling salesman problem as the testbed problem, the performance of the solvers is assessed in five aspects, i.e., effectiveness, efficiency, stability, scalability, and generalization ability. Our results show that the solvers learned by NCO approaches, in general, still fall short of traditional solvers in nearly all these aspects. A potential benefit of NCO solvers would be their superior time and energy efficiency for small-size problem instances when sufficient training instances are available. Hopefully, this work would help with a better understanding of the strengths and weaknesses of NCO and provide a comprehensive evaluation protocol for further benchmarking NCO approaches in comparison to other approaches.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Key Research and Development Program of China[2022YFA1004102] ; National Natural Science Foundation of China[
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:001033536600007
出版者
EI入藏号
20233114461264
EI主题词
Deep learning ; Energy efficiency ; Reinforcement learning ; Traveling salesman problem
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Energy Conservation:525.2 ; Artificial Intelligence:723.4 ; Operations Research:912.3 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
来源库
Web of Science
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553257
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Southern Univ Sci Technol, Shenzhen, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Liu, Shengcai,Zhang, Yu,Tang, Ke,et al. How Good is Neural Combinatorial Optimization? A Systematic Evaluation on the Traveling Salesman Problem[J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE,2023,18(3):14-28.
APA
Liu, Shengcai,Zhang, Yu,Tang, Ke,&Yao, Xin.(2023).How Good is Neural Combinatorial Optimization? A Systematic Evaluation on the Traveling Salesman Problem.IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE,18(3),14-28.
MLA
Liu, Shengcai,et al."How Good is Neural Combinatorial Optimization? A Systematic Evaluation on the Traveling Salesman Problem".IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 18.3(2023):14-28.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Shengcai]的文章
[Zhang, Yu]的文章
[Tang, Ke]的文章
百度学术
百度学术中相似的文章
[Liu, Shengcai]的文章
[Zhang, Yu]的文章
[Tang, Ke]的文章
必应学术
必应学术中相似的文章
[Liu, Shengcai]的文章
[Zhang, Yu]的文章
[Tang, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。