中文版 | English
题名

MaskDis R-CNN: An instance segmentation algorithm with adversarial network for herd pigs

作者
通讯作者Liang, Yun
发表日期
2023-07-01
DOI
发表期刊
ISSN
1751-9659
EISSN
1751-9667
卷号17页码:3488-3499
摘要
The current instance segmentation method can achieve satisfactory results in common scenarios. However, under the overlap or partial occlusion between targets caused by the complex scenes, accurate segmentation of pigs remains a challenging task. To address the problem, the authors propose an instance segmentation method based on Mask Scoring region-based convolutional neural networks (R-CNN) (MS R-CNN), which creates the adversarial network called MaskDis in the head branch of MS R-CNN. The MaskDis is trained as a discriminator using a generative adversarial network, and the MS R-CNN model is used as a generator during model training. The adversarial training enables the generator to learn context information and features at the pixel level, which effectively improves the segmentation quality under pigs' overlapping or dense occlusions scenes. Experimental conducted on the pig object segmentation dataset show that the proposed approach achieves a precision of 92.03%, a recall of 92.18%, and an F1 score of 0.9210. Compared with the basic MS R-CNN model, the approach achieved a 2.25% improvement in precision and 1.18% improvement in F1 score. Furthermore, the improved approach outperformed advanced instance segmentation methods such as YOLACT, Swin Transformer, YOLOv5-seg, and SOLOv2 on COCO evaluation metrics. These experimental results demonstrate the effectiveness of the proposed approach in instance segmentation of pigs in complex scenes, providing technical support for non-contact pig automatic management.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China["61772209","31600591"] ; Science and Technology Planning Project of Guangdong Province[2019A050510034] ; Guangzhou Key Ramp;D Program Project[2023B03J1363] ; College Students' Innovation and Entrepreneurship Competition[202110564025]
WOS研究方向
Computer Science ; Engineering ; Imaging Science & Photographic Technology
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
WOS记录号
WOS:001032108900001
出版者
EI入藏号
20233014436382
EI主题词
Complex networks ; Computer vision ; Convolutional neural networks ; Generative adversarial networks ; Image segmentation ; Mammals ; Neural network models
EI分类号
Computer Systems and Equipment:722 ; Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Vision:741.2
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553273
专题工学院_计算机科学与工程系
作者单位
1.South China Agr Univ, Coll Math & Informat, 483 Wushan Rd, Guangzhou 510642, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Tu, Shuqin,Zeng, Qiantao,Liu, Haofeng,et al. MaskDis R-CNN: An instance segmentation algorithm with adversarial network for herd pigs[J]. IET IMAGE PROCESSING,2023,17:3488-3499.
APA
Tu, Shuqin.,Zeng, Qiantao.,Liu, Haofeng.,Liang, Yun.,Liu, Xiaolong.,...&Huang, Zhengxin.(2023).MaskDis R-CNN: An instance segmentation algorithm with adversarial network for herd pigs.IET IMAGE PROCESSING,17,3488-3499.
MLA
Tu, Shuqin,et al."MaskDis R-CNN: An instance segmentation algorithm with adversarial network for herd pigs".IET IMAGE PROCESSING 17(2023):3488-3499.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tu, Shuqin]的文章
[Zeng, Qiantao]的文章
[Liu, Haofeng]的文章
百度学术
百度学术中相似的文章
[Tu, Shuqin]的文章
[Zeng, Qiantao]的文章
[Liu, Haofeng]的文章
必应学术
必应学术中相似的文章
[Tu, Shuqin]的文章
[Zeng, Qiantao]的文章
[Liu, Haofeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。