中文版 | English
题名

Severity-onset prediction of COVID-19 via artificial-intelligence analysis of multivariate factors

作者
通讯作者Wu, Qikang; Liu, Lei; Liao, Yuhui; Qiao, Kun
发表日期
2023-08-01
DOI
发表期刊
EISSN
2405-8440
卷号9期号:8
摘要
Progression to a severe condition remains a major risk factor for the COVID-19 mortality. Robust models that predict the onset of severe COVID-19 are urgently required to support sensitive decisions regarding patients and their treatments. In this study, we developed a multivariate survival model based on early-stage CT images and other physiological indicators and biomarkers using artificial-intelligence analysis to assess the risk of severe COVID-19 onset. We retrospectively enrolled 338 adult patients admitted to a hospital in China (severity rate, 31.9%; mortality rate, 0.9%). The physiological and pathological characteristics of the patients with severe and non-severe outcomes were compared. Age, body mass index, fever symptoms upon admission, coexisting hypertension, and diabetes were the risk factors for severe progression. Compared with the non-severe group, the severe group demonstrated abnormalities in biomarkers indicating organ function, inflammatory responses, blood oxygen, and coagulation function at an early stage. In addition, by integrating the intuitive CT images, the multivariable survival model showed significantly improved performance in predicting the onset of severe disease (mean timedependent area under the curve = 0.880). Multivariate survival models based on early-stage CT images and other physiological indicators and biomarkers have shown high potential for predicting the onset of severe COVID-19.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Special Fund of Foshan Summit Plan[2021YFC2302200] ; Training project of National Science Foundation for Outstanding/Excellent Young Scholars of Southern Medical University["81972019","21904145","82002253"] ; Regional Joint Fund of Natural Science Foundation of Guangdong Province[2021M691428] ; Guangdong Basic and Applied Basic Research Foundation["2020B019","2020B012","2020A015"] ; Fundamental Research Funds for the Central Universities[C620PF0217] ; Chen Jingyu Team of Sanming Project of Medicine in Shenzhen[2020A1515110529] ; Shenzhen Science and Technological Foundation[2020A1515010754] ; Guangdong Medical science foundation[2019MS134] ; Natural Science Foundation of China[SZSM201812058] ; Hospital Fund of Chinese Academy of Medical Sciences Cancer Hospital Shenzhen Hospital[JSGG20210901145200001] ; null[A2021413] ; null[22107045] ; null[E010221005]
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:001052317500001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553404
专题南方科技大学第二附属医院
南方科技大学第一附属医院
作者单位
1.Southern Univ Sci & Technol, Affiliated Hosp 2, Shenzhen Peoples Hosp 3, Dept Infect Dis,Dept Thorac Surg,Dept Radiol,Natl, Shenzhen, Peoples R China
2.Southern Med Univ, Dermatol Hosp, Mol Diag & Treatment Ctr Infect Dis, Guangzhou, Peoples R China
3.Peking Univ, Pingshan Translat Med Ctr, Sch Chem Biol & Biotechnol, Shenzhen Grad Sch,Shenzhen Bay Lab, Shenzhen, Peoples R China
4.Peking Univ, Sch Chem Biol & Biotechnol, Shenzhen Grad Sch, State Key Lab Chem Oncogen, Shenzhen, Peoples R China
5.HuaJia Biomed Intelligence, Dept Biostat, Shenzhen, Peoples R China
6.First Peoples Hosp Foshan, Dept Clin Lab, Foshan, Peoples R China
第一作者单位南方科技大学第二附属医院;  南方科技大学第一附属医院
通讯作者单位南方科技大学第二附属医院;  南方科技大学第一附属医院
第一作者的第一单位南方科技大学第二附属医院;  南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Fu, Yu,Zeng, Lijiao,Huang, Pilai,et al. Severity-onset prediction of COVID-19 via artificial-intelligence analysis of multivariate factors[J]. HELIYON,2023,9(8).
APA
Fu, Yu.,Zeng, Lijiao.,Huang, Pilai.,Liao, Mingfeng.,Li, Jialu.,...&Qiao, Kun.(2023).Severity-onset prediction of COVID-19 via artificial-intelligence analysis of multivariate factors.HELIYON,9(8).
MLA
Fu, Yu,et al."Severity-onset prediction of COVID-19 via artificial-intelligence analysis of multivariate factors".HELIYON 9.8(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fu, Yu]的文章
[Zeng, Lijiao]的文章
[Huang, Pilai]的文章
百度学术
百度学术中相似的文章
[Fu, Yu]的文章
[Zeng, Lijiao]的文章
[Huang, Pilai]的文章
必应学术
必应学术中相似的文章
[Fu, Yu]的文章
[Zeng, Lijiao]的文章
[Huang, Pilai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。