中文版 | English
题名

Evolutionary generative design of supercritical airfoils: an automated approach driven by small data

作者
通讯作者Cheng, Ran
发表日期
2023-08-01
DOI
发表期刊
ISSN
2199-4536
EISSN
2198-6053
卷号10期号:1页码:1167-1183
摘要
Supercritical airfoils are critical components in the design of commercial wide-body aircraft wings due to their ability to enhance aerodynamic performance in transonic flow regimes. However, traditional design methods for supercritical airfoils can be time-consuming and require significant manual effort, not to mention the high cost associated with computational fluid dynamics analysis. To address these challenges, this paper introduces a highly automated approach for supercritical airfoil design, called Evolutionary Generative Design (EvoGD). The EvoGD approach is based on the framework of Evolutionary Computation and employs a series of sophisticated data-driven generative models incorporated with physical information to iteratively refine initial airfoil shapes, resulting in improved aerodynamic performances and reduced constraint violations. Moreover, to speed up the evaluation of the generated airfoils, a series of accurate and efficient data-driven predictors are utilized. The efficacy of the EvoGD approach was demonstrated through experiments on a dataset of 501 supercritical airfoils, including one baseline design and 500 randomly perturbed airfoils. On average, the generated airfoils showed improved performance in terms of buffet lift coefficient, cruise lift-to-drag ratio, and thickness by 5%, 4%, and 1%, respectively. The best generated airfoil outperformed the baseline design in terms of critical buffet lift coefficient and cruise lift-to-drag ratio by 7.1% and 6.4%, respectively. The entire design process was completed in less than an hour on a personal computer, highlighting the high efficiency and scalability of the EvoGD approach.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:001052528300001
出版者
Scopus记录号
2-s2.0-85168625857
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553417
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
2.Beihang Univ, Inst Unmanned Syst, Beijing 100191, Peoples R China
3.Shanghai Aircraft Design & Res Inst, Shanghai 200436, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Sun, Kebin,Wang, Weituo,Cheng, Ran,et al. Evolutionary generative design of supercritical airfoils: an automated approach driven by small data[J]. COMPLEX & INTELLIGENT SYSTEMS,2023,10(1):1167-1183.
APA
Sun, Kebin.,Wang, Weituo.,Cheng, Ran.,Liang, Yu.,Xie, Hairun.,...&Zhang, Miao.(2023).Evolutionary generative design of supercritical airfoils: an automated approach driven by small data.COMPLEX & INTELLIGENT SYSTEMS,10(1),1167-1183.
MLA
Sun, Kebin,et al."Evolutionary generative design of supercritical airfoils: an automated approach driven by small data".COMPLEX & INTELLIGENT SYSTEMS 10.1(2023):1167-1183.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun, Kebin]的文章
[Wang, Weituo]的文章
[Cheng, Ran]的文章
百度学术
百度学术中相似的文章
[Sun, Kebin]的文章
[Wang, Weituo]的文章
[Cheng, Ran]的文章
必应学术
必应学术中相似的文章
[Sun, Kebin]的文章
[Wang, Weituo]的文章
[Cheng, Ran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。