题名 | A geometry-driven neural topic model for trip purpose inference |
作者 | |
通讯作者 | Fan, Zipei; Song, Xuan |
发表日期 | 2023-08-01
|
DOI | |
发表期刊 | |
ISSN | 1384-6175
|
EISSN | 1573-7624
|
摘要 | Understanding urban human mobility, particularly trip purposes, is essential for optimizing traffic management, personalized recommendations, and urban planning. However, in real-world scenarios, trip purposes cannot be directly extracted from the trajectory data. To address this issue, we propose a geometry-driven neural topic model for trip purpose inference. We integrate trajectory data with nearby POI data using a geometry-driven technique to enhance the interpretability of the results. Furthermore, our model captures the semantics and relationships of the data in a high-dimensional space and identifies latent topics representing distinct trip purposes. These learned topics are analyzed using clustering algorithms to group similar trips, enabling trip purpose inference. And we evaluate our model using the trajectory data of Shenzhen and Chengdu, and compare it with baseline models. The results demonstrate that our model performs well. Furthermore, we analyze trajectory data containing trip purpose information to gain insight into human mobility patterns and the influence of trip purposes, paving the way for potential implications and future research directions. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Grants of National Key Research and Development Program of China[2021YFB1714400]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Japan Society for the Promotion of Science (JSPS)[22H03573]
|
WOS研究方向 | Computer Science
; Physical Geography
|
WOS类目 | Computer Science, Information Systems
; Geography, Physical
|
WOS记录号 | WOS:001050726700002
|
出版者 | |
EI入藏号 | 20233414605299
|
EI主题词 | Geometry
; Inference engines
; Semantics
; Trajectories
|
EI分类号 | Expert Systems:723.4.1
; Information Sources and Analysis:903.1
; Mathematics:921
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553429 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, SUSTech UTokyo Joint Res Ctr Super Smart Cities, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China 2.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Jiaqi,Fan, Zipei,Song, Xuan,et al. A geometry-driven neural topic model for trip purpose inference[J]. GEOINFORMATICA,2023.
|
APA |
Zhang, Jiaqi,Fan, Zipei,Song, Xuan,&Shibasaki, Ryosuke.(2023).A geometry-driven neural topic model for trip purpose inference.GEOINFORMATICA.
|
MLA |
Zhang, Jiaqi,et al."A geometry-driven neural topic model for trip purpose inference".GEOINFORMATICA (2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论