中文版 | English
题名

A geometry-driven neural topic model for trip purpose inference

作者
通讯作者Fan, Zipei; Song, Xuan
发表日期
2023-08-01
DOI
发表期刊
ISSN
1384-6175
EISSN
1573-7624
摘要
Understanding urban human mobility, particularly trip purposes, is essential for optimizing traffic management, personalized recommendations, and urban planning. However, in real-world scenarios, trip purposes cannot be directly extracted from the trajectory data. To address this issue, we propose a geometry-driven neural topic model for trip purpose inference. We integrate trajectory data with nearby POI data using a geometry-driven technique to enhance the interpretability of the results. Furthermore, our model captures the semantics and relationships of the data in a high-dimensional space and identifies latent topics representing distinct trip purposes. These learned topics are analyzed using clustering algorithms to group similar trips, enabling trip purpose inference. And we evaluate our model using the trajectory data of Shenzhen and Chengdu, and compare it with baseline models. The results demonstrate that our model performs well. Furthermore, we analyze trajectory data containing trip purpose information to gain insight into human mobility patterns and the influence of trip purposes, paving the way for potential implications and future research directions.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Grants of National Key Research and Development Program of China[2021YFB1714400] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Japan Society for the Promotion of Science (JSPS)[22H03573]
WOS研究方向
Computer Science ; Physical Geography
WOS类目
Computer Science, Information Systems ; Geography, Physical
WOS记录号
WOS:001050726700002
出版者
EI入藏号
20233414605299
EI主题词
Geometry ; Inference engines ; Semantics ; Trajectories
EI分类号
Expert Systems:723.4.1 ; Information Sources and Analysis:903.1 ; Mathematics:921
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553429
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, SUSTech UTokyo Joint Res Ctr Super Smart Cities, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
2.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang, Jiaqi,Fan, Zipei,Song, Xuan,et al. A geometry-driven neural topic model for trip purpose inference[J]. GEOINFORMATICA,2023.
APA
Zhang, Jiaqi,Fan, Zipei,Song, Xuan,&Shibasaki, Ryosuke.(2023).A geometry-driven neural topic model for trip purpose inference.GEOINFORMATICA.
MLA
Zhang, Jiaqi,et al."A geometry-driven neural topic model for trip purpose inference".GEOINFORMATICA (2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Jiaqi]的文章
[Fan, Zipei]的文章
[Song, Xuan]的文章
百度学术
百度学术中相似的文章
[Zhang, Jiaqi]的文章
[Fan, Zipei]的文章
[Song, Xuan]的文章
必应学术
必应学术中相似的文章
[Zhang, Jiaqi]的文章
[Fan, Zipei]的文章
[Song, Xuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。