题名 | Surface water-groundwater interactions and associated nutrient loading into the coastal waters: An integrated modeling study in the Guangdong-Hong Kong-Macao Greater Bay Area, China |
姓名 | |
姓名拼音 | WANG Xiaoli
|
学号 | 11950007
|
学位类型 | 博士
|
学位专业 | 水文学与水资源
|
导师 | |
导师单位 | 环境科学与工程学院
|
外机构导师 | 陈骥
|
外机构导师单位 | 香港大学
|
论文答辩日期 | 2023-09-04
|
论文提交日期 | 2023-09-07
|
学位授予单位 | 香港大学
|
学位授予地点 | 香港
|
摘要 | River deltas typically have high population density and support a wide range of intensive and prosperous socioeconomic activities. The coastal waters near river deltas face significant challenges of eutrophication caused by excessive terrestrial nutrient loading carried by both river runoff and submarine groundwater discharge (SGD). The hydrological cycle in delta areas is complex under the joint influences of meteorological-driven forcings and ocean tidal forcing. Hydrological processes in the presence of highly dynamic river-aquifer-sea interactions have rarely been explored via integrated hydrological modeling approaches. In this study, a fully integrated numerical surface water-groundwater model was developed for the Guangdong-Hong Kong-Macao Greater Bay Area, which is the world’s largest urban area in terms of both size and population. The model’s accuracy was validated and cross-checked using observation data from gauging stations and independent remote-sensing products such as soil moisture, evapotranspiration (ET) and total water storage anomalies (TWSA). Based on the 10-year simulation results (2004-2013), the major findings of this study are as follows: 1) it is necessary to include tidal forcing, in addition to conventional meteorological-driven forcing, to capture the characteristics of long-term hydrological fluxes and states while simulating short-term flow dynamics; 2) the flow-model-computed average SGD rate per unit length of the coastline for the Greater Bay Area is 3.01 m3/d/m, which is comparable with those derived from water budget approaches but 1-2 orders of magnitude lower than the total SGD estimated by isotopic tracing methods; 3) the controlling factor for SGD was tidal forcing on the hourly time scale, and terrestrial hydrological processes on the monthly and annual time scales, respectively; and 4) an integrated hydrological model can be used to identify distinct and large subsurface zones sensitive to tidal fluctuations, quantifying the pivotal role of ocean tides in shaping the coastal groundwater system. Based on the SGD flux simulated by the integrated flow model, the annual average nutrient loadings delivered by fresh SGD into the sea were estimated to be 9.14×106 kg/a for DIN (dissolved inorganic nitrogen, referring to the sum of nitrate nitrogen and ammonium nitrogen in this study) and 0.95×106 kg/a for DIP (dissolved inorganic phosphorus). The percentages of DIN and ammonium nitrogen loadings carried by fresh SGD to those by river runoff were about 1.6% and 11.6%, respectively. Although the proportion was relatively small, the absolute amount of nutrient loading carried by fresh SGD was quite considerable. This study represents a first step in using an integrated hydrological model simultaneously driven by meteorological and tidal forcing to explore regional hydrological processes impacted by complex river-aquifer-sea interactions in a large delta area. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2019
|
学位授予年份 | 2023-12
|
参考文献列表 | Abarca, E., Karam, H., Hemond, H. F., & Harvey, C. F. (2013). Transient groundwater dynamics in a coastal aquifer: The effects of tides, the lunar cycle, and the beach profile. Water Resources Research, 49(5), 2473-2488. Adyasari, D., Dimova, N. T., Dulai, H., Gilfedder, B. S., Cartwright, I., McKenzie, T., & Fuleky, P. (2023). Radon-222 as a groundwater discharge tracer to surface waters. Earth-Science Reviews, 238, 104321. Adyasari, D., Oehler, T., Afiati, N., & Moosdorf, N. (2018). Groundwater nutrient inputs into an urbanized tropical estuary system in Indonesia. Science of the Total Environment, 627, 1066-1079. Allen, G. H., & Pavelsky, T. M. (2018). Global extent of rivers and streams. Science, 361(6402), 585-588. Arnold, J. G., Srinivasan, R., Muttiah, R. S., Williams, J. R. (1998). Large Area Hydrologic Modeling and Assessment Part I: Model Development. Journal of The American Water Resources Association, 34(1), 73-89.GPBOF. (2001-2017). Bulletin of Guangdong marine environmental status. Guangzhou: Guangdong Provincial Bureau of Ocean and FisheriesGDWRD. (2023). 2022 Guangdong water resources bulletin. Guangzhou: Water Resources Department of Guangdong Province.Bailey, R. T., Wible, T. C., Arabi, M., Records, R. M., & Ditty, J. (2016). Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes, 30(23), 4420-4433. Barnes, R. T., Sawyer, A. H., Tight, D. M., Wallace, C. D., & Hastings, M. G. (2019). Hydrogeologic controls of surface water-groundwater nitrogen dynamics within a tidal freshwater zone. Journal of Geophysical Research: Biogeosciences, 124(11), 3343-3355. Befus, K. M., Barnard, P. L., Hoover, D. J., Finzi Hart, J. A., & Voss, C. I. (2020). Increasing threat of coastal groundwater hazards from sea-level rise in California. Nature Climate Change, 10(10), 946-952. Befus, K. M., Kroeger, K. D., Smith, C. G., & Swarzenski, P. W. (2017). The magnitude and origin of groundwater discharge to eastern U.S. and Gulf of Mexico Coastal Waters. Geophysical Research Letters, 44(20), 10,396-310,406. Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E., Charette, M. A., et al. (2006). Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment, 367(2-3), 498-543. Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., & Taniguchi, M. (2003). Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66, 3-33. Burnett, W. C., Cable, J. E., & Corbett, D. R. (2003). Radon tracing of submarine groundwater discharge in coastal environments. In M. Taniguchi , K. Wang, & T. Gamo (Eds.), Land and marine hydrogeology (Vol. 25, pp. 43). Amsterdam, The Netherlands: Elsevier Science.Buschman, F. A., Hoitink, A. J. F., van der Vegt, M., & Hoekstra, P. (2009). Subtidal water level variation controlled by river flow and tides. Water Resources Research, 45(10). Bye, J. A. T., & Narayan, K. A. (2009). Groundwater response to the tide in wetlands: Observations from the Gillman Marshes, South Australia. Estuarine, Coastal and Shelf Science, 84(2), 219-226. Cai, H., Li, B., Garel, E., Pan, H., Zhao, T., Liu, F., et al. (2023). A data-driven model to quantify the impact of river discharge on tide-river dynamics in the Yangtze River estuary. Journal of Hydrology, 129411. Cai, H., Yang, Q., Zhang, Z., Guo, X., Liu, F., & Ou, S. (2018). Impact of River-Tide Dynamics on the Temporal-Spatial Distribution of Residual Water Level in the Pearl River Channel Networks. Estuaries and Coasts, 41(7), 1885-1903. Charette, M. A., Moore, W. S., & Burnett, W. C. (2008). Chapter 5 Uranium- and Thorium-Series Nuclides as Tracers of Submarine Groundwater Discharge. In S. Krishnaswami & J. K. Cochran (Eds.), Radioactivity in the Environment (Vol. 13, pp. 155-191): Elsevier.Chen, J., & Zhang, W. (2020). Impacts of tidal species on water level variations in Pearl River Delta channel networks. Regional Studies in Marine Science, 35, 101110. Chen, Q. (1993). On hydrology and water resources in the Pearl River Delta. Tropical Geography, 13(2), 121-128. in Chinese. Chen, X., Lee, R., Dwivedi, D., Son, K., Fang, Y., Zhang, X., et al. (2020). Integrating Field Observations and Process-based Modeling to Predict Watershed Water Quality under Environmental Perturbations. Journal of Hydrology, 602, 125762. Chen, X., Yu, M., Liu, C., Wang, R., Zha, W., & Tian, H. (2022). Topological and dynamic complexity of the Pearl River Delta and its responses to human intervention. Journal of Hydrology, 608, 127619. Cho, H.-M., & Kim, G. (2016). Determining groundwater Ra end-member values for the estimation of the magnitude of submarine groundwater discharge using Ra isotope tracers. Geophysical Research Letters, 43(8), 3865-3871. CIGEM. (2004-2013). China groundwater level yearbook for geo-environmental monitoring. Beijing: China Land Press.Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., et al. (2017). The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 21(7), 3427-3440. CMANCC. (2022). Blue book on climate change in China 2022. Beijing: Science Press.Condon, L. E., Atchley, A. L., & Maxwell, R. M. (2020). Evapotranspiration depletes groundwater under warming over the contiguous United States. Nature Communications, 11(1), 873. Correa, R. E., Tait, D. R., Sanders, C. J., Conrad, S. R., Harrison, D., Tucker, J. P., et al. (2020). Submarine groundwater discharge and associated nutrient and carbon inputs into Sydney Harbour (Australia). Journal of Hydrology, 580. Corson-Dosch, H., Nell, C., Volentine, R., Archer, A. A., Bechtel, E., Bruce, J. L., et al. (2022). The water cycle. U.S. Geological Survey General Information Product 221, 1 sheet, https://doi.org/10.3133/gip221.CPCCC, & CSC. (2019). Outline development Plan for the Guangdong- Hong Kong-Macao Greater Bay Area. Beijing: CPC Central Committee & State Council.Creel, L. (2003). Ripple Effects: Population and Coastal Regions: Population Reference Bureau.Dai, Y., Yang, S., Zhao, D., Hu, C., Xu, W., Anderson, D., et al. (2023). Coastal phytoplankton blooms expand and intensify in the 21st century. Nature, 615, 280–284. DEEGP. (2015-2020). Water quality monitoring information of seagoing rivers of Guangdong province. Guangzhou: Department of Ecology and Environment of Guangdong Procince.Di, X., Sun, J., Jing, J., Huang, G., & Liu, J. (2008). Analysis on reserving characteristic and exploiting foreground of groundwater in Pearl River Delta region. South-to-North Water Transfers and Water Science & Technolog, 6(6), 52-54+67. in Chinese. DNRGP & SBGP (2017). The first national geographic condition survey of Guangdong Province. Guangzhou: Department of Natural Resources of Guangdong Province.Dudula, J., & Randhir, T. (2016). Modeling the influence of Climate Change on Watershed Systems: Adaptation through Targeted Practices. Journal of Hydrology, 541. Duque, C., Russoniello, C. J., & Rosenberry, D. O. (2020). History and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 2 – Marine settings and submarine groundwater discharge. Earth-Science Reviews, 204. Dykstra, S., Dzwonkowski, B., & Torres, R. (2022). The Role of River Discharge and Geometric Structure on Diurnal Tidal Dynamics, Alabama, USA. Journal of Geophysical Research: Oceans, 127. Ensign, S., Doyle, M., & Piehler, M. (2013). The effect of tide on the hydrology and morphology of a freshwater river. Earth Surface Processes and Landforms, 38, 655-660. ESA. (2021). GlobCover Land Cover Maps. Retrieved from: http://due.esrin.esa.int/page_globcover.php.Evans, T. B., White, S. M., & Wilson, A. M. (2020). Coastal groundwater flow at the nearshore and embayment scales: A field and modeling study. Water Resources Research, 56(10). Fang, Y., Zheng, T., Zheng, X., Yang, H., Wang, H., & Walther, M. (2021). Influence of tide‐induced unstable flow on seawater intrusion and submarine groundwater discharge. Water Resources Research, 57(4). FAO, & IIASA (Cartographer). (2019). China soil map based harmonized world soil database (HWSD) (v1.1) (2009).Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., et al. (2016). An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 537, 45-60. Feng, X., Xiao, K., & Li, H. (2020). Tidal groundwater flow and its potential effect on the hydrochemical characteristics in a mud-sand-layered aquifer in Daya Bay, China. Environmental Science and Pollution Research, 27(19), 24438-24451. Ferrant, S., Caballero, Y., Perrin, J., Gascoin, S., Dewandel, B., Aulong, S., et al. (2014). Projected impacts of climate change on farmers' extraction of groundwater from crystalline aquifers in South India. Scientific Reports, 4(1), 3697. Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., Verelst, L., & Wiberg, D. (Cartographer). (2008). Global agro-ecological zones assessment for agriculture (GAEZ 2008).Gao, J., Wang, X., Zhang, Y., & Li, H. (2018). Estimating submarine groundwater discharge and associated nutrient inputs into Daya Bay during spring using radium isotopes. Water Science and Engineering, 11(2), 120-130. Garcia-Orellana, J., Rodellas, V., Tamborski, J., Diego-Feliu, M., van Beek, P., Weinstein, Y., et al. (2021). Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Science Reviews, 220, 103681. Gassman, P., Reyes, M., Green, C., & Arnold, J. (2007). The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Transactions of the ASABE, 50. George, M. E., Akhil, T., Remya, R., Rafeeque, M. K., & Suresh Babu, D. S. (2021). Submarine groundwater discharge and associated nutrient flux from southwest coast of India. Marine Pollution Bulletin, 162, 111767. GPDEE. (2023). 2022 Report on the state of Guangdong provincial ecology and environment. Guangzhou: Guangdong Provincial Department of Ecology and Environment.Guo, L., Zhu, C., Wu, X., Wan, Y., Jay, D. A., Townend, I., et al. (2020). Strong inland propagation of low-frequency long waves in river estuaries. Geophysical Research Letters, 47(19), e2020GL089112. Guo, Q., Zhao, Y., Li, M., & Liu, J. (2022). Radium isotope assessment of submarine groundwater discharge and associated nutrient inputs in Eastern Liaodong Bay, China. Frontiers in Marine Science, 9. Gwak, Y.-S., Kim, S.-H., Lee, Y.-W., Khim, B.-K., Hamm, S.-Y., & Kim, S.-W. (2014). Estimation of submarine groundwater discharge in the Il-Gwang watershed using water budget analysis and 222Rn mass balance. Hydrological Processes, 28(11), 3761-3775. Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., et al. (2014). Global water resources affected by human interventions and climate change. 111(9), 3251-3256. Han, F., Zheng, Y., Tian, Y., Li, X., Zheng, C., & Li, X. (2021). Accounting for field-scale heterogeneity in the ecohydrological modeling of large arid river basins: Strategies and relevance. Journal of Hydrology, 595, 126045. Harbaugh, A. W. (2005). MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process (6-A16). Retrieved from http://pubs.er.usgs.gov/publication/tm6A16.He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., & Li, X. (2020). The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 7(1), 25. Heiss, J. W., & Michael, H. A. (2014). Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles. Water Resources Research, 50(8), 6747-6766. Heiss, J. W., Michael, H. A., & Koneshloo, M. (2020). Denitrification hotspots in intertidal mixing zones linked to geologic heterogeneity. Environmental Research Letters, 15(8), 084015. Hoitink, A. J. F., & Jay, D. A. (2016). Tidal river dynamics: Implications for deltas. Reviews of Geophysics, 54(1), 240-272. Hoitink, A. J. F., Wang, Z. B., Vermeulen, B., Huismans, Y., & Kästner, K. (2017). Tidal controls on river delta morphology. Nature Geoscience, 10(9), 637-645. Hu, J., & Li, S. (2009). Modeling the mass fluxes and transformations of nutrients in the Pearl River Delta, China. Journal of Marine Systems, 78(1), 146-167. Hu, J., Zhang, Z., Wang, B., & Huang, J. (2021). Long-term spatiotemporal variations in and expansion of low-oxygen conditions in the Pearl River estuary: a study synthesizing observations during 1976–2017. Biogeosciences, 18(18), 5247–5264. Hu, M., Yao, M., Wang, Y., Pan, Z., Wu, K., Jiao, X., & Chen, D. (2023). Influence of nitrogen inputs, dam construction and landscape patterns on riverine nitrogen exports in the Yangtze River basin during 1980-2015. 617, 129109. Hughes, J.D., Langevin, C.D., & Banta, E.R. (2017). Documentation for the MODFLOW 6 framework: U.S. Geological Survey Techniques and Methods, book 6, chap. A57, 42 pInouchi, K., Kishi, Y., & Kakinuma, T. (1990). The motion of coastal groundwater in response to the tide. Journal of Hydrology, 115(1), 165-191. Isensee, K., Chavez, F., Conley, D., Garçon, V., Gilbert, D., Gutierrez, D., et al. (2018). The ocean is losing its breath: Declining oxygen in the world’s ocean and coastal waters – Summary for policy makers. In Declining Oxygen in the World's Ocean and Coastal Waters: IOC-UNESCO.Jay, D. A., Borde, A. B., & Diefenderfer, H. L. (2016). Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: II. Water Level Models, Floodplain Wetland Inundation, and System Zones. Estuaries and Coasts, 39(5), 1299-1324. Jay, D. A., Leffler, K., Diefenderfer, H. L., & Borde, A. B. (2015). Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-Channel Water Level Variations, Pacific Ocean to Bonneville Dam. Estuaries and Coasts, 38(2), 415-433. Jensen, L., Eicker, A., Dobslaw, H., & Pail, R. (2020). Emerging changes in terrestrial water storage variability as a target for future satellite gravity missions. Remote Sensing, 12(23), 3898. Ji, X., & Zhang, W. (2019). Tidal influence on the discharge distribution over the Pearl river Delta, China. Regional Studies in Marine Science, 31, 100791. Jiao, J., & Post, V. (2019a). Groundwater tidal dynamics. In Coastal hydrogeology (pp. 73-103). Cambridge: Cambridge University Press.Jiao, J., & Post, V. (2019b). Submarine Groundwater Discharge. In Coastal Hydrogeology (pp. 187-214). Cambridge: Cambridge University Press.Jiao, J. J., & Tang, Z. (1999). An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resources Research, 35(3), 747-751. Jiao, J. J., Wang, Y., Cherry, J. A., Wang, X., Zhi, B., Du, H., & Wen, D. (2010). Abnormally high a mmonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China. Environmental Science & Technology, 44(19), 7470-7475. Jin, G., Pan, H., Zhang, Q., Lv, X., Zhao, W., & Gao, Y. (2018). Determination of Harmonic Parameters with Temporal Variations: An Enhanced Harmonic Analysis Algorithm and Application to Internal Tidal Currents in the South China Sea. Journal of Atmospheric and Oceanic Technology, 35(7), 1375-1398. Jones, A. E., Hardison, A. K., Hodges, B. R., McClelland, J. W., & Moffett, K. B. (2019). An expanded rating curve model to estimate river discharge during tidal influences across the progressive-mixed-standing wave systems. PLoS One, 14(12), e0225758. Jones, A. E., Hardison, A. K., Hodges, B. R., McClelland, J. W., & Moffett, K. B. (2020). Defining a riverine tidal freshwater zone and its spatiotemporal dynamics. Water Resources Research, 56(4), e2019WR026619. Keller, A. A., Garner, K., Rao, N., Knipping, E., & Thomas, J. (2023). Hydrological models for climate-based assessments at the watershed scale: A critical review of existing hydrologic and water quality models. Science of the Total Environment, 867, 161209. Khorrami, B., & Gunduz, O. (2021). An enhanced water storage deficit index (EWSDI) for drought detection using GRACE gravity estimates. Journal of Hydrology, 603, 126812. Kroeger, K. D., Swarzenski, P. W., Greenwood, W. J., & Reich, C. (2007). Submarine groundwater discharge to Tampa Bay: Nutrient fluxes and biogeochemistry of the coastal aquifer. Marine Chemistry, 104(1), 85-97. Kuan, W. K., Jin, G., Xin, P., Robinson, C., Gibbes, B., & Li, L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48(2). Kwon, E. Y., Kim, G., Primeau, F., Moore, W. S., Cho, H.-M., DeVries, T., et al. (2014). Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophysical Research Letters, 41(23), 8438-8444. Lan, X. (1991). Organic geochemical characteristics in the late Quaternary sediments of the Pear River Delta. Tropic Oceanology(1), 13-20. in Chinese. Lancia, M., Su, H., Tian, Y., Xu, J., Andrews, C., Lerner, D. N., & Zheng, C. (2020). Hydrogeology of the Pearl River Delta, southern China. Journal of Maps, 16(2), 388-395. Lancia, M., Zheng, C., Yi, S., Lerner, D. N., & Andrews, C. (2019). Analysis of groundwater resources in densely populated urban watersheds with a complex tectonic setting: Shenzhen, southern China. Hydrogeology Journal, 27(1), 183-194. Lee, C. M., Jiao, J. J., Luo, X., & Moore, W. S. (2012). Estimation of submarine groundwater discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong. Science of the Total Environment, 433, 427-433. Lee, D. R. (1977). A device for measuring seepage flux in lakes and estuaries. Limnology and Oceanography, 22(1), 140-147. Lee, S., Sadeghi, A., Yeo, I.-Y., & Hively, W. (2017). Assessing the Impacts of Future Climate Conditions on the Effectiveness of Winter Cover Crops in Reducing Nitrate Loads into the Chesapeake Bay Watersheds Using the SWAT Model. Transactions of the ASABE, 60, 1939-1955. Levanon, E., Yechieli, Y., Gvirtzman, H., & Shalev, E. (2017). Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers – Field measurements and numerical model. Journal of Hydrology, 551, 665-675. Li, H., & Jiao, J. J. (2001). Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea. Water Resources Research, 37(5), 1165-1171. Li, H., & Jiao, J. J. (2002a). Analytical solutions of tidal groundwater flow in coastal two-aquifer system. Advances in Water Resources, 25(4), 417-426. Li, H., & Jiao, J. J. (2002b). Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system. Journal of Hydrology, 268(1), 234-243. Li, H., & Jiao, J. J. (2003). Influence of the tide on the mean watertable in an unconfined, anisotropic, inhomogeneous coastal aquifer. Advances in Water Resources, 26(1), 9-16. Liu, J., Du, J., Wu, Y., & Liu, S. (2018). Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary. Estuarine, Coastal and Shelf Science, 203, 17-28. Liu, J., Du, J., Wu, Y., & Liu, S. (2022). Radium-derived water mixing and associated nutrient in the northern South China Sea. Frontiers in Marine Science, 9. Liu, Y., Shang, S.-h., & Mao, X.-m. (2012). Tidal effects on groundwater dynamics in coastal aquifer under different beach slopes. Journal of Hydrodynamics, Ser. B, 24(1), 97-106. Long, D., Yang, Y., Wada, Y., Hong, Y., Liang, W., Chen, Y., et al. (2015). Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin. Remote Sensing of Environment, 168, 177-193. Lü, X., Liu, J., Han, Z., Zhu, L., Yang, M., & Li, h. (2021). Geochemical characteristics and driving factors of high-ammonium groundwater in the rapid urbanization of the Pearl River Delta. Geology in China, 48(6), 1770-1780. Lu, Y., Yuan, J., Lu, X., Su, C., Zhang, Y., Wang, C., et al. (2018). Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environmental Pollution, 239, 670-680. Luijendijk, E., Gleeson, T., & Moosdorf, N. (2020). Fresh groundwater discharge insignificant for the world's oceans but important for coastal ecosystems. Nature Communications, 11(1), 1260. Luo, S., Yang, Y., & Chui, T. F. M. (2020). Tidal responses of groundwater level and salinity in a silty mangrove swamp of different topographic characteristics. Journal of Hydrology, 591, 125598. Luo, X., Jiao, J. J., Liu, Y., Zhang, X., Liang, W., & Tang, D. (2018). Evaluation of water residence time, submarine groundwater discharge, and maximum new production supported by groundwater borne nutrients in a coastal upwelling shelf system. Journal of Geophysical Research: Oceans, 123(1), 631-655. Luoma, S., Majaniemi, J., Pullinen, A., Mursu, J., & Virtasalo, J. J. (2021). Geological and groundwater flow model of a submarine groundwater discharge site at Hanko (Finland), northern Baltic Sea. Hydrogeology Journal, 29(3), 1279-1297. Ma, Q., & Zhang, Y. (2020). Global research trends and hotspots on submarine groundwater discharge (SGD): A bibliometric analysis. 17(3), 830. Maleki, M., Banihabib, M. E., & Randhir, T. (2022). An integrated framework for simultaneously modeling primary and secondary salinity at a watershed scale. Journal of Hydrology, 612, 128171. Mao, Q., Shi, P., Yin, K., Gan, J., & Qi, Y. (2004). Tides and tidal currents in the Pearl River Estuary. Continental Shelf Research, 24(16), 1797-1808. Mao, Y., Zhang, H., Cheng, Y., Zhao, J., & Huang, Z. (2023). The characteristics of nitrogen and phosphorus output in China's highly urbanized Pearl River Delta region. Journal of Environmental Management, 325, 116543. Markstrom, S., Niswonger, R., Regan, R., Prudic, D., & Barlow, P. (2008). GSFLOW—Coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005): U.S. Geological Survey Techniques and Methods.Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M. T., Payn, R. A., & LaFontaine, J. H. (2015). PRMS-IV, the precipitation-runoff modeling system, version 4. In U.S. Geological Survey Techniques and Methods, book 6 (pp. 158). Reston, Virginia: U.S. Geological Survey.Matsoukis, C., Amoudry, L. O., Bricheno, L., & Leonardi, N. (2023). Numerical Investigation of River Discharge and Tidal Variation Impact on Salinity Intrusion in a Generic River Delta Through Idealized Modelling. Estuaries and Coasts, 46(1), 57-83. Maul, G. A., & Duedall, I. W. (2019). Demography of Coastal Populations. In C. W. Finkl & C. Makowski (Eds.), Encyclopedia of Coastal Science (pp. 692-700). Cham: Springer International Publishing.MEEC. (2022). Bulletin on China's Marine Ecological Environment in 2021. Beijing: Ministry of Ecology and Environment of the People’s Republic of China.Metcalf and Eddy Inc. (1971) Storm water management model. Washington DC: Environmental Protection Agency, p. 353.Michael, H. A., Lubetsky, J. S., & Harvey, C. F. (2003). Characterizing submarine groundwater discharge: A seepage meter study in Waquoit Bay, Massachusetts. Geophysical Research Letters, 30(6). Michael, H. A., Mulligan, A. E., & Harvey, C. F. (2005). Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature, 436(7054), 1145-1148. Michael, H. A., Scott, K. C., Koneshloo, M., Yu, X., Khan, M. R., & Li, K. (2016). Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf. Geophysical Research Letters, 43(20), 10,782-710,791. Moore, W. S. (1996). Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380(6575), 612-614. Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science, 2, 59-88. Moore, W. S., Blanton, J. O., & Joye, S. B. (2006). Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research, 111(C9), C09006. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. NASA, METI, AIST, Spacesystems, J., & Team, U. S. J. A. S. (2019). ASTER Global Digital Elevation Model NetCDF V003. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. (2002). Soil and Water Assessment Tool theoretical documentation: Version 2000. Texas: Grassland, Soil & Water Research Laboratory, EPA.Niazi, M., Nietch, C., Maghrebi, M., Jackson, N., Bennett, B., Tryby, M., & Massoudieh, A. (2017). Storm Water Management Model: Performance Review and Gap Analysis. Journal of Sustainable Water in the Built Environment, 3, 04017002. Nicholls, R. J., & Tol, R. S. J. (2006). Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1841), 1073-1095. Niu, J., & Phanikumar, M. (2015). Modeling watershed-scale solute transport using an integrated, process-based hydrologic model with applications to bacterial fate and transport. Journal of Hydrology, 529, 35-48. Niu, J., Shen, C., Li, S.-G., & Phanikumar, M. S. (2014). Quantifying storage changes in regional Great Lakes watersheds using a coupled subsurface-land surface process model and GRACE, MODIS products. Water Resources Research, 50(9), 7359-7377. O'Connor, J. A., Erler, D. V., Ferguson, A., & Maher, D. T. (2022). The tidal freshwater river zone: Physical properties and biogeochemical contribution to estuarine hypoxia and acidification - The “hydrologic switch”. Estuarine, Coastal and Shelf Science, 268, 107786. Oberdorfer, J. A. (2003). Hydrogeologic modeling of submarine groundwater discharge: Comparison to other quantitative methods. Biogeochemistry, 66(1), 159-169. Ogston, A. S., Allison, M. A., McLachlan, R. L., Nowacki, D. J., & Stephens, J. D. (2017). How Tidal Processes Impact the Transfer of Sediment from Source to Sink: Mekong River collaborative studies. Oceanography, 30(3), 22-33. Okuhata, B. K., El-Kadi, A. I., Dulai, H., Lee, J., Wada, C. A., Bremer, L. L., et al. (2021). A density-dependent multi-species model to assess groundwater flow and nutrient transport in the coastal Keauhou aquifer, Hawai‘i, USA. Hydrogeology Journal, 30(1), 231-250. Pan, H., Lv, X., Wang, Y., Matte, P., Chen, H., & Jin, G. (2018). Exploration of tidal-fluvial interaction in the Columbia River Estuary using S_TIDE. Journal of Geophysical Research: Oceans, 123(9), 6598-6619. Paniconi, C., & Putti, M. (2015). Physically based modeling in catchment hydrology at 50: Survey and outlook. Water Resources Research, 51(9), 7090-7129. Pauw, P. S., Oude Essink, G. H. P., Leijnse, A., Vandenbohede, A., Groen, J., & van der Zee, S. E. A. T. M. (2014). Regional scale impact of tidal forcing on groundwater flow in unconfined coastal aquifers. Journal of Hydrology, 517, 269-283. Peterson, R. N., Meile, C., Peterson, L. E., Carter, M., & Miklesh, D. (2019). Groundwater discharge dynamics into a salt marsh tidal river. Estuarine, Coastal and Shelf Science, 218, 324-333. PGGP. (2015) Regulations on Dongjiang River water dispatch of Guangdong province. Guangzhou.Prakash, R., Srinivasamoorthy, K., Gopinath, S., & Saravanan, K. (2018). Measurement of submarine groundwater discharge using diverse methods in Coleroon Estuary, Tamil Nadu, India. Applied Water Science, 8(1), 13. Prieto, C., & Destouni, G. (2005). Quantifying hydrological and tidal influences on groundwater discharges into coastal waters. Water Resources Research, 41(12). Prieto, C., & Destouni, G. (2011). Is submarine groundwater discharge predictable? Geophysical Research Letters, 38(1), L01402. Prommer, H., Barry, D. A., & Zheng, C. (2003). MODFLOW/MT3DMS-Based Reactive Multicomponent Transport Modeling. Groundwater, 41(2), 247-257. Qu, W., Li, H., Huang, H., Zheng, C., Wang, C., Wang, X., & Zhang, Y. (2017). Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China. Journal of Hydrology, 555, 185-197. Rabalais, N. N., Díaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., & Zhang, J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7(2), 585-619. Riedel, T., Lettmann, K., Beck, M., & Brumsack, H.-J. (2010). Tidal variations in groundwater storage and associated discharge from an intertidal coastal aquifer. Journal of Geophysical Research: Oceans, 115(C4). Robinson, C., Li, L., & Prommer, H. (2007). Tide-induced recirculation across the aquifer-ocean interface. Water Resources Research, 43(7). Rodellas, V., Garcia-Orellana, J., Masque, P., Feldman, M., & Weinstein, Y. (2015). Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America, 112(13), 3926-3930. Röper, T., Greskowiak, J., & Massmann, G. (2015). Instabilities of submarine groundwater discharge under tidal forcing. Limnology and Oceanography, 60(1), 22-28. Rossman, L. A. (2017). Storm water management model reference manual volume II – Hydraulics. Washington, DC: Office of Research and Development, Water System Division, EPA.Russoniello, C. J., Konikow, L. F., Kroeger, K. D., Fernandez, C., Andres, A. S., & Michael, H. A. (2016). Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed. Journal of Hydrology, 538, 783-793. Santos, I. R., Burnett, W. C., Chanton, J., Dimova, N., & Peterson, R. N. (2009). Land or ocean?: Assessing the driving forces of submarine groundwater discharge at a coastal site in the Gulf of Mexico. Journal of Geophysical Research, 114(C4), C04012. Santos, I. R., Chen, X., Lecher, A. L., Sawyer, A. H., Moosdorf, N., Rodellas, V., et al. (2021). Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5), 307-323. Santos, I. R., Eyre, B. D., & Huettel, M. (2012). The driving forces of porewater and groundwater flow in permeable coastal sediments: A review. Estuarine, Coastal and Shelf Science, 98, 1-15. Sassi, M. G., Hoitink, A. J. F., de Brye, B., Vermeulen, B., & Deleersnijder, E. (2011). Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean Dynamics, 61(12), 2211-2228. Save, H., Bettadpur, S., & Tapley, B. D. (2016). High-resolution CSR GRACE RL05 mascons. Journal of Geophysical Research: Solid Earth, 121(10), 7547-7569. Sawyer, David, C. H., & Famiglietti, J. S. (2016). Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science, 353(6300), 705-707. Schaffranek, R. W. (1987). A Flow-simulation Model of the Tidal Potomac River: Department of the Interior, U.S. Geological Survey.SCOR, & LOICZ. (2004). Submarine groundwater discharge: Management implications, measurements and effects. Paris: UNESCO Selvam, S., Muthukumar, P., Roy, P. D., Venkatramanan, S., Chung, S. Y., Elzain, H. E., et al. (2022). Submarine groundwater discharge and associated nutrient influx in surroundings of the estuary region at Gulf of Mannar coast, Indian Ocean. Chemosphere, 305, 135271. https://www.ncbi.nlm.nih.gov/pubmed/35705142.Shen, Q., Xie, L., & Wang, Y. (2017). Change analysis of tidal current characteristics in the Pearl River Delta in recent years. Pearl River, 38(8), 13-17. in Chinese. Sholkovitz, E., Herbold, C., & Charette, M. (2003). An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge. Limnology and Oceanography: Methods, 1(1), 16-28. Sivapalan, M., & Blöschl, G. (2015). Time scale interactions and the coevolution of humans and water. Water Resources Research, 51(9), 6988-7022. Smith, L., & Zawadzki, W. (2003). A hydrogeologic model of submarine groundwater discharge: Florida intercomparison experiment. Biogeochemistry, 66(1), 95-110. Sun, J., Jing, J., Huang, G., Liu, J., Chen, X., & Zhang, Y. (2009). Report on the investigation and assessment of groundwater contamination in the Pearl River Delta area. Shijiazhuang: Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences.Sun, Z., Zheng, Y., Li, X., Tian, Y., Han, F., Zhong, Y., et al. (2018). The Nexus of Water, Ecosystems, and Agriculture in Endorheic River Basins: A System Analysis Based on Integrated Ecohydrological Modeling. Water Resources Research, 54(10), 7534-7556. Tan, E., Wang, G., Moore, W. S., Li, Q., & Dai, M. (2018). Shelf-scale submarine groundwater discharge in the northern South China Sea and East China Sea and its geochemical impacts. Journal of Geophysical Research: Oceans, 123(4), 2997-3013. Tan, M., Gassman, P. W., Yang, X., & Haywood, J. (2020). A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Advances in Water Resources, 143, 103662. Tang, Q. (2020). Global change hydrology: Terrestrial water cycle and global change. Science China: Earth Sciences, 63(3), 459-462. Taniguchi, M. (2002). Tidal effects on submarine groundwater discharge into the ocean. Geophysical Research Letters, 29(12). Taniguchi, M., Burnett, W. C., Smith, C. F., Paulsen, R. J., O'rourke, D., Krupa, S. L., & Christoff, J. L. (2003). Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry, 66, 35-53. Taniguchi, M., Dulai, H., Burnett, K. M., Santos, I. R., Sugimoto, R., Stieglitz, T., et al. (2019). Submarine groundwater discharge: Updates on its measurement techniques, geophysical drivers, magnitudes, and effects. Frontiers in Environmental Science, 7. Taniguchi, M., Ishitobi, T., Chen, J., Onodera, S.-i., Miyaoka, K., Burnett, W. C., et al. (2008). Submarine groundwater discharge from the Yellow River Delta to the Bohai Sea, China. Journal of Geophysical Research, 113(C6). Tapley, B. D., Bettadpur, S., Ries John, C., Thompson Paul, F., & Watkins Michael, M. (2004). GRACE measurements of mass variability in the earth system. Science, 305(5683), 503-505. Tian, Y., Zheng, Y., Han, F., Zheng, C., & Li, X. (2018). A comprehensive graphical modeling platform designed for integrated hydrological simulation. Environmental Modelling & Software, 108, 154-173. Tian, Y., Zheng, Y., Zheng, C., Xiao, H., Fan, W., Zou, S., et al. (2015). Exploring scale-dependent ecohydrological responses in a large endorheic river basin through integrated surface water-groundwater modeling. Water Resources Research, 51(6), 4065-4085. Unnikrishnan, P., Srinivas, R., Ramasamy, M., & Suresh Babu, D. S. (2021). Computation of submarine groundwater discharge from geomorphologically different coastal catchments of SW India using numerical modeling. Regional Studies in Marine Science, 47. Upadhyay, P., Linhoss, A., Kelble, C., Ashby, S., Murphy, N., & Parajuli, P. B. (2022). Applications of the SWAT Model for Coastal Watersheds: Review and Recommendations. Journal of Agricultural Safety and Health, 65(2), 453-469. USEPA. (2010). SWMM 5 User’s Manual. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development. Valle-Levinson, A., Schettini, C. A. F., & Truccolo, E. C. (2019). Subtidal variability of exchange flows produced by river pulses, wind stress and fortnightly tides in a subtropical stratified estuary. Estuarine, Coastal and Shelf Science, 221, 72-82. Wang, B., Xin, M., Wei, Q., & Xie, L. (2018). A historical overview of coastal eutrophication in the China Seas. Marine Pollution Bulletin, 136, 394-400. Wang, Q., Wang, X., Xiao, K., Zhang, Y., Luo, M., Zheng, C., & Li, H. (2021). Submarine groundwater discharge and associated nutrient fluxes in the Greater Bay Area, China revealed by radium and stable isotopes. Geoscience Frontiers, 12(5), 101223. Wang, R., Yuan, Y., Yen, H., Grieneisen, M., Arnold, J., Wang, D., et al. (2019). A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Science of the Total Environment, 669, 512-526. Wang, X., Jiao, J. J., Wang, Y., Cherry, J. A., Kuang, X., Liu, K., et al. (2013). Accumulation and transport of ammonium in aquitards in the Pearl River Delta (China) in the last 10,000 years: conceptual and numerical models. Hydrogeology Journal, 21(5), 961-976. Wang, X., Li, H., Yang, J., Zheng, C., Zhang, Y., An, A., et al. (2017). Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China. Journal of Hydrology, 551, 784-792. Wang, X., Li, H., Zheng, C., Yang, J., Zhang, Y., Zhang, M., et al. (2018). Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China. Geochimica et Cosmochimica Acta, 225, 52-65. Wang, X., Zhang, Y., Luo, M., Xiao, K., Wang, Q., Tian, Y., et al. (2021). Radium and nitrogen isotopes tracing fluxes and sources of submarine groundwater discharge driven nitrate in an urbanized coastal area. Science of the Total Environment, 763, 144616. Wang, Y., Liu, D., Xiao, W., Zhou, P., Tian, C., Zhang, C., et al. (2021). Coastal eutrophication in China: Trend, sources, and ecological effects. Harmful Algae, 107, 102058. Wells, J. T. (1995). Chapter 6 Tide-Dominated Estuaries and Tidal Rivers. In G. M. E. Perillo (Ed.), Developments in Sedimentology (Vol. 53, pp. 179-205): Elsevier.Wilson, A. M., Evans, T. B., Moore, W. S., Schutte, C. A., & Joye, S. B. (2015). What time scales are important for monitoring tidally influenced submarine groundwater discharge? Insights from a salt marsh. Water Resources Research, 51(6), 4198-4207. Wu, L.-h., & Zhuang, S.-y. (2010). Experimental investigation of effect of tide on coastal groundwater table. Journal of Hydrodynamics, Ser. B, 22(1), 66-72. Xiao, K., Wu, J., Li, H., Hong, Y., Wilson, A. M., Jiao, J. J., & Shananan, M. (2018). Nitrogen fate in a subtropical mangrove swamp: Potential association with seawater-groundwater exchange. Science of the Total Environment, 635, 586-597. Xiong, J., Yin, J., Guo, S., & Slater, L. (2021). Continuity of terrestrial water storage variability and trends across mainland China monitored by the GRACE and GRACE-Follow on satellites. Journal of Hydrology, 599, 126398. Xu, Z. (2009). Hydrological models. Beijing: Science Press.Xu, Z., Tong, J., Hu, B. X., & Yan, Z. (2022). Mapping and monitoring seasonal and tidal effects on the salt-freshwater interface using electrical resistivity tomography techniques. Estuarine, Coastal and Shelf Science, 276, 108051. Xuan, Y., Tang, C., & Cao, Y. (2020). Mechanisms of nitrate accumulation in highly urbanized rivers: Evidence from multi-isotopes in the Pearl River Delta, China. Journal of Hydrology, 587, 124924. Yang, D., Yang, Y., & Xia, J. (2021). Hydrological cycle and water resources in a changing world: A review. Geography and Sustainability, 2(2), 115-122. Yang, K., Chen, Y., He, J., Zhao, L., Lu, H., Qin, J., et al. (2020). Development of a daily soil moisture product for the period of 2002–2011 in Chinese mainland. Science China Earth Sciences, 63(8), 1113-1125. Yang, K., & He, J. (2019). China meteorological forcing dataset (1979-2018). Retrieved from: https://dx.doi.org/10.11888/AtmosphericPhysics.tpe.249369.file.Yang, M., Liu, H., & Meng, W. (2021). An analytical solution of the tide-induced groundwater table overheight under a three-dimensional kinematic boundary condition. Journal of Hydrology, 595, 125986. Yang, M., Zheng, Y., Xu, X., Liu, H., & Xin, P. (2022). Groundwater table fluctuations in a coastal unconfined aquifer with depth-varying hydraulic properties. Journal of Hydrology, 606, 127407. Yao, Z., Wang, Y., & Li, A. (2009). Primary analysis of water distribution ratio variation in main waterway in Pearl River Delta. Pearl River(2), 43-51. in Chinese. Ye, R., Qian, Y., Kong, J., Zhang, W., & Jin, G. (2014). Key technologies of real - time flood and storm surge forecasting for Pearl River Delta. Geomatics and Information Science of Wuhan University, 39(7), 782-787. in Chinese. Yi, L., Ma, B., Liu, L., Tang, G., & Wang, T. (2016). Simulation of groundwater-seawater interaction in the coastal surficial aquifer in Bohai Bay, Tianjin, China. Estuarine, Coastal and Shelf Science, 177, 20-30. Yu, J., Tian, Y., Jing, H., Sun, T., Wang, X., Andrews, C. B., & Zheng, C. (2023). Predicting regional wastewater treatment plant discharges using machine learning and population migration big data. ACS ES&T Water, 3(5), 1314-1328. Yu, J., Tian, Y., Wang, X., Wang, X., Lancia, M., Li, H., et al. (2022). A new simulation-optimization framework for estimation of submarine groundwater discharge based on hydrodynamic modeling and isotopic data. Geophysical Research Letters, 49(23), e2022GL098893. Yu, X., Wu, L., Yu, X., & Xin, P. (2022). Tidal fluctuations relieve coastal seawater intrusion caused by groundwater pumping. Marine Pollution Bulletin, 184, 114231. Yu, X., Xin, P., & Lu, C. (2019). Seawater intrusion and retreat in tidally-affected unconfined aquifers: Laboratory experiments and numerical simulations. Advances in Water Resources, 132, 103393. Yu, X., Xu, Z., Moraetis, D., Nikolaidis, N. P., Schwartz, F. W., Zhang, Y., et al. (2021). Capturing hotspots of fresh submarine groundwater discharge using a coupled surface–subsurface model. Journal of Hydrology, 598. Yu, X., Zhang, Y., Zhu, Q., Liu, C., Xiong, J., Xu, Z., & Zhang, W. (2021). Research on groundwater environment monitoring network oriented to water source protection and pollution monitoring in Guangdong province. Environmental Monitoring in China, 37(5), 32-40. in Chinese. Zell, W. O., & Sanford, W. E. (2020). Calibrated Simulation of the Long-Term Average Surficial Groundwater System and Derived Spatial Distributions of its Characteristics for the Contiguous United States. Water Resources Research, 56(8), e2019WR026724. Zhang, B., Zheng, T., Zheng, X., Jiang, S., Cao, M., Walther, M., & Lu, C. (2023). Dynamics of upstream saltwater intrusion driven by tidal river in coastal aquifers. Science of the Total Environment, 877, 162857. Zhang, F., Huang, G., Hou, Q., Liu, C., Zhang, Y., & Zhang, Q. (2019). Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. Journal of Hydrology, 577, 124004. Zhang, K., & Chui, T. F. M. (2020). Assessing the impact of spatial allocation of bioretention cells on shallow groundwater – An integrated surface-subsurface catchment-scale analysis with SWMM-MODFLOW. Journal of Hydrology, 586, 124910. Zhang, S., & Zhang, H. (2023). Anthropogenic impact on long-term riverine CODMn, BOD, and nutrient flux variation in the Pearl River Delta. Science of the Total Environment, 859, 160197. Zhang, W., Ruan, X., Zheng, J., Zhu, Y., & Wu, H. (2010). Long-term change in tidal dynamics and its cause in the Pearl River Delta, China. Geomorphology, 120(3), 209-223. Zhang, X., Dong, F., Dai, H., Hu, B. X., Qin, G., Li, D., et al. (2020). Influence of lunar semidiurnal tides on groundwater dynamics in estuarine aquifers. Hydrogeology Journal, 28(4), 1419-1429. Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., & Yang, Y. (2019). Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sensing of Environment, 222, 165-182. Zhang, Y., Li, H., Guo, H., Zheng, C., Wang, X., Zhang, M., & Xiao, K. (2020). Improvement of evaluation of water age and submarine groundwater discharge: A case study in Daya Bay, China. Journal of Hydrology, 586. Zhang, Y., Wang, X., Xue, Y., Zou, C., Luo, M., Li, G., et al. (2022). Advances in the study of submarine groundwater discharge (SGD) in China. Science China Earth Sciences, 65(10), 1948-1960. Zheng, C., Hill, M. C., Cao, G., & Ma, R. (2012). MT3DMS: Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1549-1559. Zheng, C., & Wang, P. (1999). MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide. Vicksburg, MS: U.S. Army Engineer Research and Development Center. Zhou, Y., Befus, K. M., Sawyer, A. H., & David, C. H. (2018). Opportunities and challenges in computing fresh groundwater discharge to continental coastlines: A multimodel comparison for the United States Gulf and Atlantic Coasts. Water Resources Research, 54(10), 8363-8380. Zhou, Y., Sawyer, A. H., David, C. H., & Famiglietti, J. S. (2019). Fresh submarine groundwater discharge to the near‐global coast. Geophysical Research Letters, 46(11), 5855-5863. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553441 |
专题 | 工学院_环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Wang XL. Surface water-groundwater interactions and associated nutrient loading into the coastal waters: An integrated modeling study in the Guangdong-Hong Kong-Macao Greater Bay Area, China[D]. 香港. 香港大学,2023.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11950007-王晓丽-环境科学与工程(8475KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[王晓丽]的文章 |
百度学术 |
百度学术中相似的文章 |
[王晓丽]的文章 |
必应学术 |
必应学术中相似的文章 |
[王晓丽]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论