中文版 | English
题名

Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model

作者
通讯作者Xu, Kun
发表日期
2023-07-01
DOI
发表期刊
EISSN
2405-8440
卷号9期号:7
摘要
A reliable and safe energy storage system utilizing lithium-ion batteries relies on the early prediction of remaining useful life (RUL). Despite this, accurate capacity prediction can be challenging if little historical capacity data is available due to the capacity regeneration and the complexity of capacity degradation over multiple time scales. In this study, data decomposition, transformers, and deep neural networks (DNNs) are combined to develop a model of RUL prediction for lithium-ion batteries. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used for battery capacity sequential data to account for the capacity regeneration effect. The transformer networks are leveraged to predict each component of capacity regeneration thus improving the model's ability to handle long sequences while reducing the amount of data. The global degradation trend is predicted using a deep neural network. We validated the early prediction performance of the model using two publicly available battery datasets. Results show that the prediction model only uses 25%-30% data to achieve high accuracy. In the two public data sets, the RMSE errors were 0.0208 and 0.0337, respectively. A high level of accuracy is achieved with the model proposed in this study, which is based on fewer capacity data.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:001055399000001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/553563
专题工学院_材料科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
3.Natl Univ Sci & Technol, Coll Elect & Mech Engn, Rawalpindi, Pakistan
第一作者单位材料科学与工程系
第一作者的第一单位材料科学与工程系
推荐引用方式
GB/T 7714
Cai, Yuxiang,Li, Weimin,Zahid, Taimoor,et al. Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model[J]. HELIYON,2023,9(7).
APA
Cai, Yuxiang,Li, Weimin,Zahid, Taimoor,Zheng, Chunhua,Zhang, Qingguang,&Xu, Kun.(2023).Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model.HELIYON,9(7).
MLA
Cai, Yuxiang,et al."Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model".HELIYON 9.7(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cai, Yuxiang]的文章
[Li, Weimin]的文章
[Zahid, Taimoor]的文章
百度学术
百度学术中相似的文章
[Cai, Yuxiang]的文章
[Li, Weimin]的文章
[Zahid, Taimoor]的文章
必应学术
必应学术中相似的文章
[Cai, Yuxiang]的文章
[Li, Weimin]的文章
[Zahid, Taimoor]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。