题名 | Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model |
作者 | |
通讯作者 | Xu, Kun |
发表日期 | 2023-07-01
|
DOI | |
发表期刊 | |
EISSN | 2405-8440
|
卷号 | 9期号:7 |
摘要 | A reliable and safe energy storage system utilizing lithium-ion batteries relies on the early prediction of remaining useful life (RUL). Despite this, accurate capacity prediction can be challenging if little historical capacity data is available due to the capacity regeneration and the complexity of capacity degradation over multiple time scales. In this study, data decomposition, transformers, and deep neural networks (DNNs) are combined to develop a model of RUL prediction for lithium-ion batteries. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used for battery capacity sequential data to account for the capacity regeneration effect. The transformer networks are leveraged to predict each component of capacity regeneration thus improving the model's ability to handle long sequences while reducing the amount of data. The global degradation trend is predicted using a deep neural network. We validated the early prediction performance of the model using two publicly available battery datasets. Results show that the prediction model only uses 25%-30% data to achieve high accuracy. In the two public data sets, the RMSE errors were 0.0208 and 0.0337, respectively. A high level of accuracy is achieved with the model proposed in this study, which is based on fewer capacity data. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
WOS研究方向 | Science & Technology - Other Topics
|
WOS类目 | Multidisciplinary Sciences
|
WOS记录号 | WOS:001055399000001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/553563 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China 3.Natl Univ Sci & Technol, Coll Elect & Mech Engn, Rawalpindi, Pakistan |
第一作者单位 | 材料科学与工程系 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Cai, Yuxiang,Li, Weimin,Zahid, Taimoor,et al. Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model[J]. HELIYON,2023,9(7).
|
APA |
Cai, Yuxiang,Li, Weimin,Zahid, Taimoor,Zheng, Chunhua,Zhang, Qingguang,&Xu, Kun.(2023).Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model.HELIYON,9(7).
|
MLA |
Cai, Yuxiang,et al."Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model".HELIYON 9.7(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论