中文版 | English
题名

Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti~(3+) as conduction pathways

作者
发表日期
2016
DOI
发表期刊
ISSN
1998-0124
卷号9期号:2页码:353-362
摘要

PX-phase PbTiO_3 (PT) nanowires with open channels running along the length direction have been investigated as an anode material for lithium ion batteries. This material shows a stabilized reversible specific capacity of about 410 mAh·g~(-1) up to 200 cycles with a charge/discharge voltage plateau of around 0.3-0.65 V. In addition, it exhibits superior high-rate performance, with 90% and 77% capacity retention observed at 1 and 2 A·g~(-1), respectively. At a very high current rate of 10 A·g~(-1), a specific capacity of over 170 mAh·g~(-1) is retained up to 100 cycles, significantly outperforming the rate capability reported for Pb and Pb oxides. The results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses along with the cyclic voltammogram results reveal that the PX-phase PT nanowires undergo irreversible structural amorphization and reduction reactions during the initial cycle, which allow them to transform into a composite structure composed of 2-5 nm Pb nanoparticles uniformly dispersed in the 1D amorphous Li2O·TiO_2·LiTiO_2 matrix. In this composite structure, the presence of abundant amounts of Ti~(3+) in both the charged and discharged states enhances the electrical conductance of the system, whereas the presence of ultrafine Pb nanoparticles imparts high reversible capacity. The structurally stable TiO_2-based amorphous matrix can also considerably buffer the volume variation during the charge/discharge process, thereby facilitating extremely stable cycling performance. This compound combines the high specific capacity of Pb-based materials and the good rate capability of Ti~(3+)-based wiring. Our results might furnish a possible route for achieving superior cycling and rate performance and contribute towards the search for next-generation anode materials.

关键词
学科领域
物理学
收录类别
SCI ; EI ; CSCD
语种
英语
学校署名
其他
WOS记录号
WOS:000371798800008
CSCD记录号
CSCD:5845835
EI入藏号
20203108999548
EI主题词
Amorphous materials ; Anodes ; Composite structures ; High resolution transmission electron microscopy ; Lead titanate ; Lithium-ion batteries ; Nanoparticles ; Nanowires ; Structure (composition) ; Titanium dioxide ; Transmission electron microscopy ; X ray photoelectron spectroscopy
EI分类号
Structural Members and Shapes:408.2 ; Electron Tubes:714.1 ; Optical Devices and Systems:741.3 ; Nanotechnology:761 ; Chemical Products Generally:804 ; Inorganic Compounds:804.2 ; Solid State Physics:933 ; Amorphous Solids:933.2 ; Materials Science:951
来源库
CSCD
引用统计
被引频次[WOS]:7
被引频次:1[CSCD]   [CSCD记录]
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/55561
专题工学院_材料科学与工程系
作者单位
1.Division of Energy and Environment in Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055;
2.Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055;
3.Department of Chemistry, Tsinghua University, Beijing, 100084
推荐引用方式
GB/T 7714
Shi Zhiyong,Wang Jin,Wang Wenxi,et al. Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti~(3+) as conduction pathways[J]. Nano Research,2016,9(2):353-362.
APA
Shi Zhiyong.,Wang Jin.,Wang Wenxi.,Zhang Yixiang.,Li Bo.,...&Li Yadong.(2016).Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti~(3+) as conduction pathways.Nano Research,9(2),353-362.
MLA
Shi Zhiyong,et al."Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti~(3+) as conduction pathways".Nano Research 9.2(2016):353-362.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Shi2016_Article_Rema(2389KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shi Zhiyong]的文章
[Wang Jin]的文章
[Wang Wenxi]的文章
百度学术
百度学术中相似的文章
[Shi Zhiyong]的文章
[Wang Jin]的文章
[Wang Wenxi]的文章
必应学术
必应学术中相似的文章
[Shi Zhiyong]的文章
[Wang Jin]的文章
[Wang Wenxi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。