中文版 | English
题名

带冷却偏置流的亥姆霍兹共振器消声机理研究

其他题名
SOUND ABSORPTION MECHANISM OF HELMHOLTZ RESONATOR WITH COOLING BIAS FLOW
姓名
姓名拼音
GAN Zhenpeng
学号
12032405
学位类型
硕士
学位专业
0825 航空宇航科学与技术
学科门类/专业学位类别
08 工学
导师
杨东
导师单位
力学与航空航天工程系
论文答辩日期
2023-05-11
论文提交日期
2023-09-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

亥姆霍兹共振器(HRs)是在实践中用于抑制热声振荡的典型被动控制装置。为了保护亥姆霍兹共振器免受燃烧室高温气流的侵蚀,一般从 HR 空腔的背面注入冷却偏流,其温度远低于燃烧室。然而,这导致了燃烧室中冷流和热流的动态混合,从而在 HR 下游产生熵波,影响 HR 的吸声性能。本文推导了一个具有不同温度偏流的亥姆霍兹共振器与一维燃烧室管道耦合的声类比模型。该模型提供了关于 HR 的存在和熵波的产生如何影响声场的机制,阐释了背后的物理机理。它是由线性化的质量、动量和能量守恒方程与线性亥姆霍兹共振器模型结合而导出的。与已有的耦合理论模型的结果进行对比,通过 COMSOL 数值模拟验证了声类比模型的准确性。从目前的声学类比模型可以清楚地看出,HR 的冷却偏置流对燃烧室管一维声场的影响是既提供了与质量相关的声源项,又提供了熵相关的声源项。从声学上来说,该质量相关源项和熵源项都是单极子声源。同时推导了一个熵模型,它表明冷却偏置流和热切向流的动态掺混过程产生的熵声源与质量相关声源相比是一个负源。如果偏置流温度高于切向流温度,则熵相关源项成为正源。

因此,与质量相关的声源相比,熵扰动可能作为正/负声源,这取决于偏置流的温度是高于还是低于切向流温度。通过我们进一步推导表明,该熵相关声源可以和质量相关声源合并转化为一个体积声源,由此得出带冷却偏流亥姆霍兹共振所带来的总的声源效应:其本质是一个体积声源,该体积源取决于共振器处的平均声速和密度,而不是燃烧室处的平均声速和密度。当偏流质量流量与切向流流量之比大于约 5% 时,共振器两侧的平均流参数的差异就不再可以忽略。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] LEFEBVRE A H, BALLAL D R. Gas turbine combustion: alternative fuels and emissions[M].CRC press, 2010.
[2] RUPP J. Acoustic absorption and the unsteady flow associated with circular apertures in a gas turbine environment[D]. Loughborough University, 2013.
[3] LEWIS J S, NIEDZWIECKI R W, BAHR D, et al. Aircraft technology and its relation toemissions[J]. Aviation and the Global Atmosphere, 1999: 291-70.
[4] CORREA S M. Power generation and aeropropulsion gas turbines: From combustion science to combustion technology[C]//Symposium (International) on Combustion: volume 27. Elsevier,1998: 1793-1807.
[5] SEO S, LEE S Y. Effects of unmixedness on combustion instabilities in a lean-premixed gasturbine combustor[J]. Flow, turbulence and combustion, 2010, 85: 95-112.
[6] PARK J, NGUYEN T H, JOUNG D, et al. Prediction of NO x and CO emissions from an industrial lean-premixed gas turbine combustor using a chemical reactor network model[J]. Energy & Fuels, 2013, 27(3): 1643-1651.
[7] CHO C H, BAEK G M, SOHN C H, et al. A numerical approach to reduction of NOx emission from swirl premix burner in a gas turbine combustor[J]. Applied Thermal Engineering, 2013, 59(1-2): 454-463.
[8] ROSENTSVIT L, LEVY Y, ERENBURG V, et al. Extension of the combustion stability rangein dry low NOx lean premixed gas turbine combustor using a fuel rich annular pilot burner[J].Journal of engineering for gas turbines and power, 2014, 136(5).
[9] TEMME J E, ALLISON P M, DRISCOLL J F. Combustion instability of a lean premixedprevaporized gas turbine combustor studied using phase-averaged PIV[J]. Combustion andFlame, 2014, 161(4): 958-970.
[10] GOUNDER J D, BOXX I, KUTNE P, et al. Phase resolved analysis of flame structure in leanpremixed swirl flames of a fuel staged gas turbine model combustor[J]. Combustion scienceand technology, 2014, 186(4-5): 421-434.
[11] LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: operational experience,fundamental mechanisms, and modeling [M]. American Institute of Aeronautics and Astronautics, 2005.
[12] MOTHEAU E, NICOUD F, POINSOT T. Mixed acoustic–entropy combustion instabilities ingas turbines[J]. Journal of Fluid Mechanics, 2014, 749: 542-576.
[13] STOPPER U, MEIER W, SADANANDAN R, et al. Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape[J]. Combustion and Flame, 2013, 160(10): 2103-2118.
[14] MOËLL D, LÖRSTAD D, BAI X S. Numerical investigation of hydrogen enriched naturalgas in the SGT-800 burner[C]//Turbo Expo: Power for Land, Sea, and Air: volume 56697.American Society of Mechanical Engineers, 2015: V04BT04A064.
[15] VALERA-MEDINA A, MORRIS S, RUNYON J, et al. Ammonia, methane and hydrogen forgas turbines[J]. Energy Procedia, 2015, 75: 118-123.
[16] VALERA-MEDINA A, MARSH R, RUNYON J, et al. Ammonia–methane combustion intangential swirl burners for gas turbine power generation[J]. Applied Energy, 2017, 185: 1362-1371.
[17] MOËLL D, LÖRSTAD D, BAI X S. LES of hydrogen enriched methane/air combustion inthe SGT-800 burner at real engine conditions[C]//Turbo Expo: Power for Land, Sea, and Air:volume 51067. American Society of Mechanical Engineers, 2018: V04BT04A023.
[18] O’CONNOR J, ACHARYA V, LIEUWEN T. Transverse combustion instabilities: Acoustic,fluid mechanic, and flame processes[J]. Progress in Energy and Combustion Science, 2015, 49:1-39.
[19] HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in energy and combustion science, 2009, 35(4): 293-364.
[20] GOY C J, JAMES S R, REA S. Monitoring combustion instabilities: E. ON UK’s experience[J]. Progress in Astronautics and Aeronautics, 2005, 210: 163.
[21] RAYLEIGH L. The explanation of certain acoustical phenomena[J]. Roy. Inst. Proc., 1878, 8: 536-542.
[22] RAYLEIGH J W S B. The theory of sound: volume 2[M]. Macmillan, 1896.
[23] WEINBERG F J. Advanced combustion methods[R]. Imperial College of Science and Technology, London, 1986.
[24] LIEUWEN T C. Unsteady combustor physics[M]. Cambridge University Press, 2021.
[25] LIEUWEN T. Modeling premixed combustion-acoustic wave interactions: A review[J]. Journal of propulsion and power, 2003, 19(5): 765-781.
[26] DOWLING A P, STOW S R. Acoustic analysis of gas turbine combustors[J]. Journal of propulsion and power, 2003, 19(5): 751-764.
[27] MONGIA H C, HELD T, HSIAO G, et al. Challenges and progress in controlling dynamics in gas turbine combustors[J]. Journal of Propulsion and Power, 2003, 19(5): 822-829.
[28] BALASUBRAMANIAN K, SUJITH R I. Non-normality and nonlinearity in combustion–acoustic interaction in diffusion flames[J/OL]. Journal of Fluid Mechanics, 2008, 594: 29–57.DOI: 10.1017/S0022112007008737.
[29] POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1-28.
[30] DOWLING A P. Nonlinear self-excited oscillations of a ducted flame[J]. Journal of fluidmechanics, 1997, 346: 271-290.
[31] DOWLING A P. A kinematic model of a ducted flame[J]. Journal of fluid mechanics, 1999,394: 51-72.
[32] SCHULZ O, DOLL U, EBI D, et al. Thermoacoustic instability in a sequential combustor:Large eddy simulation and experiments[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5325-5332.
[33] HERNÁNDEZ I, STAFFELBACH G, POINSOT T, et al. LES and acoustic analysis of thermoacoustic instabilities in a partially premixed model combustor[J]. Comptes rendus mécanique, 2013, 341(1-2): 121-130.
[34] STOW S R, DOWLING A P. A time-domain network model for nonlinear thermoacousticoscillations[C]//Turbo Expo: Power for Land, Sea, and Air: volume 43130. 2008: 539-551.
[35] ULLRICH W C, MAHMOUDI Y, LACKHOVE K, et al. Prediction of combustion noise ina model combustor using a network model and a lnse approach[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(4): 041501.
[36] SCHUERMANS B, GUETHE F, PENNEL D, et al. Thermoacoustic modeling of a gas turbineusing transfer functions measured at full engine pressure[C]//Turbo Expo: Power for Land, Sea, and Air: volume 48838. 2009: 503-514.
[37] NICOUD F, BENOIT L, SENSIAU C, et al. Acoustic modes in combustors with compleximpedances and multidimensional active flames[J]. AIAA journal, 2007, 45(2): 426-441.
[38] CAMPOREALE S, FORTUNATO B, CAMPA G. A finite element method for threedimensional analysis of thermo-acoustic combustion instability[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(1).
[39] SILVA C F, NICOUD F, SCHULLER T, et al. Combining a Helmholtz solver with the flamedescribing function to assess combustion instability in a premixed swirled combustor[J]. Combustion and Flame, 2013, 160(9): 1743-1754.
[40] ZHAO D, LI X. A review of acoustic dampers applied to combustion chambers in aerospace industry[J]. Progress in Aerospace Sciences, 2015, 74: 114-130.
[41] STEELE R C, COWELL L H, CANNON S M, et al. Passive control of combustion instabilityin lean premixed combustors[J]. J. Eng. Gas Turbines Power, 2000, 122(3): 412-419.
[42] RICHARDS G A, STRAUB D L, ROBEY E H. Passive control of combustion dynamics instationary gas turbines[J]. Journal of Propulsion and Power, 2003, 19(5): 795-810.
[43] PARK I S, SOHN C H. Nonlinear acoustic damping induced by a half-wave resonator in an acoustic chamber[J]. Aerospace science and technology, 2010, 14(6): 442-450.
[44] SOHN C H, PARK J H. A comparative study on acoustic damping induced by half-wave,quarter-wave, and Helmholtz resonators[J]. Aerospace Science and Technology, 2011, 15(8):606-614.
[45] PUTNAM A A. Combustion-driven oscillations in industry[M]. Elsevier Publishing Company, 1971.
[46] HUGHES I, DOWLING A. The absorption of sound by perforated linings[J]. Journal of Fluid Mechanics, 1990, 218: 299-335.
[47] ELDREDGE J D, DOWLING A P. The absorption of axial acoustic waves by a perforated liner with bias flow[J]. Journal of Fluid Mechanics, 2003, 485: 307-335.
[48] BELLUCCI V, FLOHR P, PASCHEREIT C O, et al. On the use of Helmholtz resonators fordamping acoustic pulsations in industrial gas turbines[J]. J. Eng. Gas Turbines Power, 2004,126(2): 271-275.
[49] HOWE M. Attenuation of sound in a low Mach number nozzle flow[J]. Journal of FluidMechanics, 1979, 91(2): 209-229.
[50] BECHERT D. Sound absorption caused by vorticity shedding, demonstrated with a jet flow[J].Journal of Sound and Vibration, 1980, 70(3): 389-405.
[51] HOWE M. On the theory of unsteady high Reynolds number flow through a circular aperture [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1979, 366(1725): 205-223.
[52] ROCKWELL D, NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics, 1979, 11(1): 67-94.
[53] CRIGHTON D G. The Kutta condition in unsteady flow[J]. Annual Review of Fluid Mechanics,1985, 17(1): 411-445.
[54] MICHALKE A. On spatially growing disturbances in an inviscid shear layer[J]. Journal ofFluid Mechanics, 1965, 23(3): 521-544.
[55] MUNT R. Acoustic transmission properties of a jet pipe with subsonic jet flow: I. The cold jet reflection coefficient[J]. Journal of Sound and Vibration, 1990, 142(3): 413-436.
[56] BOIJ S, NILSSON B. Reflection of sound at area expansions in a flow duct[J]. Journal ofSound and Vibration, 2003, 260(3): 477-498.
[57] TAM C K, KURBATSKII K A. Microfluid dynamics and acoustics of resonant liners[J]. AIAAjournal, 2000, 38(8): 1331-1339.
[58] TAM C K, KURBATSKII K A, AHUJA K, et al. A numerical and experimental investigationof the dissipation mechanisms of resonant acoustic liners[J]. Journal of Sound and Vibration,2001, 245(3): 545-557.
[59] TAM C K, JU H, JONES M G, et al. A computational and experimental study of resonators in three dimensions[J]. Journal of Sound and Vibration, 2010, 329(24): 5164-5193.
[60] HOWE M, SCOTT M, SIPCIC S. The influence of tangential mean flow on the Rayleighconductivity of an aperture[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1996, 452(1953): 2303-2317.
[61] CUMMINGS A. Acoustic nonlinearities and power losses at orifices[J]. AIAA journal, 1984,22(6): 786-792.
[62] DUPERE I D, DOWLING A P. The use of Helmholtz resonators in a practical combustor[J].J. Eng. Gas Turbines Power, 2005, 127(2): 268-275.
[63] ZHAO D, A’BARROW C, MORGANS A S, et al. Acoustic damping of a Helmholtz resonator with an oscillating volume[J]. AIAA journal, 2009, 47(7): 1672-1679.
[64] LAHIRI C. Acoustic performance of bias flow liners in gas turbine combustors[Z]. 2014.
[65] DE BEDOUT J M, FRANCHEK M A, BERNHARD R J, et al. Adaptive-passive noise controlwith self-tuning Helmholtz resonators[J]. Journal of Sound and Vibration, 1997, 202(1): 109-123.
[66] GRIFFIN S, LANE S A, HUYBRECHTS S. Coupled Helmholtz resonators for acoustic attenuation[J]. J. Vib. Acoust., 2001, 123(1): 11-17.
[67] JOHANSSON T A, KLEINER M. Theory and experiments on the coupling of two Helmholtz resonators[J]. The Journal of the Acoustical Society of America, 2001, 110(3): 1315-1328.
[68] XU M, SELAMET A, KIM H. Dual helmholtz resonator[J]. Applied Acoustics, 2010, 71(9):822-829.
[69] CAI C, MAK C M. Hybrid noise control in a duct using a periodic dual Helmholtz resonator array[J]. Applied Acoustics, 2018, 134: 119-124.
[70] SELAMET A, LEE I, HUFF N. Acoustic attenuation of hybrid silencers[J]. Journal of soundand vibration, 2003, 262(3): 509-527.
[71] LI D, CHENG L. Acoustically coupled model of an enclosure and a Helmholtz resonator array [J]. Journal of sound and vibration, 2007, 305(1-2): 272-288.
[72] NUDEHI S S, DUNCAN G S, FAROOQ U. Modeling and experimental investigation of aHelmholtz resonator with a flexible plate[J]. Journal of vibration and acoustics, 2013, 135(4).
[73] ZHAO D. Transmission loss analysis of a parallel-coupled Helmholtz resonator network[J]. AIAA journal, 2012, 50(6): 1339-1346.
[74] ZHANG Z, ZHAO D, HAN N, et al. Control of combustion instability with a tunable Helmholtz resonator[J]. Aerospace Science and Technology, 2015, 41: 55-62.
[75] ROYCE R. The jet engine[M]. John Wiley & Sons, 2015.
[76] PALIES P, SCHULLER T, DUROX D, et al. Acoustically perturbed turbulent premixed swirling flames[J]. Physics of Fluids, 2011, 23(3): 037101.
[77] ARMSTRONG D. Acoustic grazing flow impedance using waveguide principles[R]. 1971.
[78] AURÉGAN Y, STAROBINSKI R, PAGNEUX V. Influence of grazing flow and dissipationeffects on the acoustic boundary conditions at a lined wall[J]. The Journal of the AcousticalSociety of America, 2001, 109(1): 59-64.
[79] BUSSE-GERSTENGARBE S, RICHTER C, THIELE F H, et al. Impedance eduction based onmicrophone measurements of liners under grazing flow conditions[J]. AIAA journal, 2012, 50(4): 867-879.
[80] JING X, SUN X, WU J, et al. Effect of grazing flow on the acoustic impedance of an orifice[J]. AIAA journal, 2001, 39(8): 1478-1484.
[81] KOOIJMAN G, AURÉGAN Y, HIRSCHBERG A. Orifice impedance under grazing flow:modal expansion approach[C]//11th AIAA/CEAS Aeroacoustics Conference. 2005: 2857.
[82] TOULORGE T, DE ROECK W, DENAYER H, et al. Computational aeroacoustic characterization of different orifice geometries under grazing flow conditions[C]//Proceedings of the 25th Conference on Noise and Vibration Engineering (ISMA2012): volume 25. KATHOLIEKE UNIV LEUVEN, DEPT WERKTUIGKUNDE, 2012: 617-631.
[83] BOURQUARD C, NOIRAY N. Stabilization of acoustic modes using Helmholtz and Quarter-Wave resonators tuned at exceptional points[J]. Journal of Sound and Vibration, 2019, 445:288-307.
[84] KELLER J J, ZAUNER E. On the use of Helmholtz resonators as sound attenuators[J].Zeitschrift für angewandte Mathematik und Physik ZAMP, 1995, 46(3): 297-327.
[85] ĆOSIĆ B, REICHEL T G, PASCHEREIT C O. Acoustic response of a Helmholtz resonatorexposed to hot-gas penetration and high amplitude oscillations[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(10).
[86] BOTHIEN M R, WASSMER D. Impact of density discontinuities on the resonance frequency of Helmholtz resonators[J]. AIAA journal, 2015, 53(4): 877-887.
[87] ĆOSIĆ B, WASSMER D, TERHAAR S, et al. Acoustic response of Helmholtz dampers in thepresence of hot grazing flow[J]. Journal of Sound and Vibration, 2015, 335: 1-18.
[88] ZAHN M, BETZ M, SCHULZE M, et al. Turbo Expo: Power for Land, Sea, and Air: Volume4A: Combustion, Fuels and Emissions Predicting the Influence of Damping Devices on theStability Margin of an Annular Combustor[C]. 2017.
[89] BETZ M, ZAHN M, HIRSCH C, et al. Impact of Combustion Chamber Dynamics on the Temperature Distribution in a Resonator[C]//Turbo Expo: Power for Land, Sea, and Air: volume 58615. American Society of Mechanical Engineers, 2019.
[90] MINIERO L, MENSAH G A, BOURQUARD C, et al. Failure of thermoacoustic instabilitycontrol due to periodic hot gas ingestion in Helmholtz dampers[J]. Journal of Sound and Vibration, 2023, 548: 117544.
[91] YANG D, MORGANS A S. Acoustic models for cooled Helmholtz resonators[J]. AIAA Journal, 2017, 55(9): 3120-3127.
[92] GAN Z, YANG D. An acoustic analogy model for Helmholtz resonators with cooling bias flow [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 1-11.
[93] BLAKE W K, CANDEL S, CRIGTHON D, et al. Recent Advances in Aeroacoustics: Proceedings of an International Symposium Held at Stanford University, August 22–26, 1983[M]. Springer Science & Business Media, 2012.
[94] DOWLING A P, SEVIK M, FFOWCS-WILLIAMS J. Sound and sources of sound[M]. TheAmerican Society of Mechanical Engineers (ASME), 1984.
[95] PIERCE A D. Acoustics: an introduction to its physical principles and applications[M].Springer, 2019.
[96] FOURIER J B J. Théorie analytique de la chaleur[M]. Firmin Didot, 1822.
[97] KINSLER L E, FREY A R, COPPENS A B, et al. Fundamentals of acoustics[M]. John wiley& sons, 2000.
[98] BERANEK L L. Loudspeakers and microphones[J]. The journal of the acoustical society ofAmerica, 1954, 26(5): 618-629.
[99] BARON RAYLEIGH J. On the theory of resonance[J]. Philos. Trans., 1871, 161: 77-118.
[100] RAYLEIGH J. Theory of Sound, Vol. II[M]. Dover Publications, 1945.
[101] CRANDALL I B. Theory of vibrating systems and sound[M]. D. Van Nostrand Company,1926.
[102] BOLT R, LABATE S, INGÅRD U. The acoustic reactance of small circular orifices[J]. TheJournal of the Acoustical Society of America, 1949, 21(2): 94-97.
[103] INGARD U. On the theory and design of acoustic resonators[J]. The Journal of the acoustical society of America, 1953, 25(6): 1037-1061.
[104] HOWE M. On the absorption of sound by turbulence and other hydrodynamic flows[J]. IMA Journal of Applied Mathematics, 1984, 32(1-3): 187-209.
[105] HOWE M. The damping of sound by wall turbulent shear layers[J]. The Journal of the Acoustical Society of America, 1995, 98(3): 1723-1730.
[106] HOWE M. Influence of cross-sectional shape on the conductivity of a wall aperture in mean flow[J]. Journal of sound and vibration, 1997, 207(5): 601-616.
[107] HOWE M, HOWE M. Acoustics of Fluid-Structure Interactions Cambridge University Press [Z]. 1998.
[108] ANDREINI A, BIANCHINI C, FACCHINI B, et al. Assessment of numerical tools for theevaluation of the acoustic impedance of multi-perforated plates[C]//Turbo Expo: Power forLand, Sea, and Air: volume 54624. 2011: 1065-1077.
[109] LAHIRI C, ENGHARDT L, BAKE F, et al. Establishment of a high quality database for theacoustic modeling of perforated liners[J]. Journal of Engineering for Gas Turbines and Power,2011, 133(9).
[110] RUPP J, CARROTTE J, MACQUISTEN M. The use of perforated damping liners in aero gas turbine combustion systems[J]. Journal of engineering for gas turbines and power, 2012, 134 (7).
[111] SCARPATO A, TRAN N, DUCRUIX S, et al. Modeling the damping properties of perforated screens traversed by a bias flow and backed by a cavity at low Strouhal number[J]. Journal of Sound and Vibration, 2012, 331(2): 276-290.
[112] JING X, SUN X. Experimental investigations of perforated liners with bias flow[J]. The Journal of the Acoustical Society of America, 1999, 106(5): 2436-2441.
[113] RUPP J, CARROTTE J, SPENCER A. Interaction between the acoustic pressure fluctuations and the unsteady flow field through circular holes[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(6).
[114] DUPERE I, DOWLING A. The absorption of sound by helmholtz resonators with and without flow[C]//8th AIAA/CEAS Aeroacoustics Conference & Exhibit. 2002: 2590.
[115] LUONG T, HOWE M S, MCGOWAN R S. On the Rayleigh conductivity of a bias-flow aperture [J]. Journal of Fluids and Structures, 2005, 21(8): 769-778.
[116] CUMMINGS A. Transient and multiple frequency sound transmission through perforated plates at high amplitude[J]. The Journal of the Acoustical Society of America, 1986, 79(4): 942-951.
[117] BAUER A B. Impedance theory and measurements on porous acoustic liners[J]. Journal of Aircraft, 1977, 14(8): 720-728.
[118] DEAN L. Coupling of Helmholtz resonators to improve acoustic liners for turbofan engines at low frequency[R]. 1975.
[119] ZINN B T. A theoretical study of non-linear damping by Helmholtz resonators[J]. Journal of Sound and Vibration, 1970, 13(3): 347-356.
[120] RICE E J. Theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow[J]. The Journal of the Acoustical Society of America, 1976, 59(S1): S32-S32.
[121] ELNADY T. Modelling and characterization of Perforates in Lined Ducts and Mufflers[D].Farkost och flyg, 2004.
[122] ALLAM S, ÅBOM M. Experimental characterization of acoustic liners with extended reaction[C]//14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference).2008: 3074.
[123] ANDREINI A, FACCHINI B, GIUSTI A, et al. Thermoacoustic analysis of a full annular leanburn aero-engine combustor[C]//Turbo Expo: Power for Land, Sea, and Air: volume 55102.American Society of Mechanical Engineers, 2013: V01AT04A069.
[124] EULER L. Principes généraux du mouvement des fluides[J]. Mémoires de l’académie dessciences de Berlin, 1757: 274-315.
[125] BATCHELOR G. The physical properties of fluids[J]. An Introduction to Fluid Dynamics;Cambridge Mathematical Library; Cambridge University Press: Cambridge, UK, 2000: 1-70.
[126] PIERCE A D, ACOUSTICS A. Introduction to its physical principles and applications[J].Acoustical Society of America and American Institute of Physics, 1981: 122.
[127] LI J, MORGANS A S. Simplified models for the thermodynamic properties along a combustor and their effect on thermoacoustic instability prediction[J]. Fuel, 2016, 184: 735-748.
[128] DE DOMENICO F, ROLLAND E O, HOCHGREB S. A generalised model for acoustic andentropic transfer function of nozzles with losses[J]. Journal of Sound and Vibration, 2019, 440:212-230.
[129] DE DOMENICO F, ROLLAND E O, RODRIGUES J, et al. Compositional and entropy indirect noise generated in subsonic non-isentropic nozzles[J]. Journal of Fluid Mechanics, 2021, 910:A5.
[130] JAIN A, MAGRI L. A physical model for indirect noise in non-isentropic nozzles: transferfunctions and stability[J]. Journal of Fluid Mechanics, 2022, 935: A33.
[131] AGUILAR J G, JUNIPER M P. Adjoint methods for elimination of thermoacoustic oscillations in a model annular combustor via small geometry modifications[C]//Turbo Expo: Power for Land, Sea, and Air: volume 51050. American Society of Mechanical Engineers, 2018:V04AT04A054.
[132] YANG D, GUZMÁN-IÑIGO J, MORGANS A S. Sound generation by entropy perturbations passing through a sudden flow expansion[J]. Journal of Fluid Mechanics, 2020, 905: R2.
[133] HOWE M. Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute[J]. Journal of Fluid Mechanics, 1975, 71(4): 625-673.
[134] MARBLE F E, CANDEL S M. Acoustic disturbance from gas non-uniformities convectedthrough a nozzle[J/OL]. Journal of Sound and Vibration, 1977, 55(2): 225-243. DOI: 10.1016/0022-460X(77)90596-X.
[135] BAKE F, MICHEL U, ROEHLE I. Investigation of entropy noise in aero-engine combustors [Z]. 2007.
[136] BAKE F, RICHTER C, MÜHLBAUER B, et al. The entropy wave generator (EWG): a reference case on entropy noise[J]. Journal of Sound and Vibration, 2009, 326(3-5): 574-598.
[137] BAKE F, KINGS N, FISCHER A, et al. Experimental investigation of the entropy noise mechanism in aero-engines[J]. International Journal of Aeroacoustics, 2009, 8(1): 125-141.
[138] HOWE M S. Indirect combustion noise[J/OL]. Journal of Fluid Mechanics, 2010, 659: 267–288. DOI: 10.1017/S0022112010002466.
[139] YANG D, GUZMáN-IñIGO J, MORGANS A S. Sound generation by entropy perturbations passing through a sudden flow expansion[J/OL]. Journal of Fluid Mechanics, 2020, 905: R2. DOI: 10.1017/jfm.2020.849.
[140] WEILENMANN M, XIONG Y, NOIRAY N. On the dispersion of entropy waves in turbulent flows[J/OL]. Journal of Fluid Mechanics, 2020, 903: R1. DOI: 10.1017/jfm.2020.703.
[141] YANG D, GUZMÁN-IÑIGO J, MORGANS A S. Sound generated by axisymmetric non-plane entropy waves passing through flow contractions[J]. International Journal of Aeroacoustics, 2022: 1475472X221107368.
[142] D’ALEMBERT J L R. Recherches sur la courbe que forme une corde tendue mise en vibration [Z]. 1747.
[143] EULER L. De la propagation du son[J]. Mémoires de l’Académie des Sciences de Berlin, 1766:185-209.
[144] EULER L. Supplément aux recherches sur la propagation du son[J]. Mémoires de l’académie des sciences de Berlin, 1766: 452-483.
[145] SLATON W V, NISHIKAWA A. Aeroacoustic response of coaxial wall-mounted Helmholtz resonators in a low-speed wind tunnel[J]. The Journal of the Acoustical Society of America, 2015, 137(1): 253-260.

所在学位评定分委会
力学
国内图书分类号
O357.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559071
专题工学院_力学与航空航天工程系
推荐引用方式
GB/T 7714
甘振鹏. 带冷却偏置流的亥姆霍兹共振器消声机理研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032405-甘振鹏-力学与航空航天(20168KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[甘振鹏]的文章
百度学术
百度学术中相似的文章
[甘振鹏]的文章
必应学术
必应学术中相似的文章
[甘振鹏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。