中文版 | English
题名

3D micro/nano printing of functional crystal materials

姓名
姓名拼音
LIU Yu
学号
11950023
学位类型
博士
学位专业
机械工程
导师
程鑫
导师单位
材料科学与工程系
论文答辩日期
2023-08-30
论文提交日期
2023-09-19
学位授予单位
香港大学
学位授予地点
香港
摘要

Functional crystal materials comprise a broad category with unique properties originating from their chemical compositions and periodic molecular arrangement. The practical utilization of functional crystalline materials necessitates their high-precision, freeform shaping via cost-effective manufacturing processes. However, most developed approaches have relied on complex, expensive lithographic processes. Although 3D printing techniques provide unprecedented shaping capability in manufacturing, they have not been suitable for crystalline materials due to a lack of crystal engineering strategy.

This thesis introduces a novel strategy to incorporate the solution-mediated crystallization pathways into 3D printing, fabricating freestanding, freeform crystalline micro- or nano architectures. The key idea is to exploit a femtoliter ink meniscus to confine and guide either evaporation-driven direct crystallization or solidification of precursor compounds followed by post-treatments in three-dimensions. This strategy, named meniscus-guided 3D printing, can manufacture three classes of functional crystal materials such as metal-organic frameworks (MOF), semiconductor metal oxides (SMOXs), and pre-synthesized nanocrystals, demonstrating microelectronic devices.

First, we developed the meniscus-guided 3D printing method to fabricate pure HKUST-1 MOF micro-monolith with a high resolution of < 3 µms. Unlike traditional pelletization or extrusion processes, our layer-by-layer method does not use mechanical force or additives to manufacture the MOF monolith, resulting in retained porosity and surface area. Thus, our 3D-printed HKUST-1 monolith displayed a Brunauer–Emmett–Teller (BET) surface area of 1192 m2/g, superior to the monoliths produced by other manufacturing approaches. A micro humidity sensor composed of the printed HKUST-1 micro-walls was successfully demonstrated.

Second, we harnessed meniscus-guided 3D printing to fabricate suspended SMOX nanowires for gas sensor microdevices. This high-precision, damage-free approach enabled the direct integration of individual nanowires on only a 1.5 µm-thick suspended silicon nitride membrane embedding an interdigitated electrode and a micro-heater. The polycrystalline nanowires were acquired by calcination, demonstrating high performance and low power consumption gas sensing. The chemical composition of the printed metal oxide nanowires can be varied by changing metal precursors. This was proved by directly printing twenty-four types of nanowires consisting of six metal oxides and four noble metal dopants and characterizing their gas sensing selectivity. Our method provides a simple and versatile way to produce high-performance electronic nose (E-nose) microdevices.

We expect the works presented in this thesis to widen the material option of 3D micro/nano printing, paving the new way for additive manufacturing of microelectronic devices. Another interesting ongoing strategy is using pre-synthesized nanocrystals, including perovskite quantum dots (PeQDs), MOF nanocrystals, and metallic nanoparticles for nano-liquid 3D printing methods. The utilization of 3D printing could potentially make a synergistic effect with conventional semiconducting processing, providing processing simplicity, cost-effectiveness, and design flexibility in microdevice manufacturing, if combined with conventional semiconducting processing.

关键词
语种
英语
培养类别
联合培养
入学年份
2019
学位授予年份
2023-11
参考文献列表

1 Jakus, A.E., Chapter 1 - An Introduction to 3D Printing—Past, Present, and Future Promise, in 3D Printing in Orthopaedic Surgery, M. Dipaola and F.M. Wodajo, Editors. 2019, Elsevier. p. 1-15.2 Kodama, H., Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer. Review of Scientific Instruments 52, 1770-1773, (1981).3 Ngo, T.D., A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering 143, 172-196, (2018).4 Jacobs, P.F., Rapid prototyping & manufacturing: fundamentals of stereolithography. 1992: Society of Manufacturing Engineers.5 Tumbleston, J.R., D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J.P. Rolland, A. Ermoshkin, E.T. Samulski, and J.M. DeSimone, Continuous liquid interface production of 3D objects. Science 347, 1349-1352, (2015).6 Wang, X., M. Jiang, Z. Zhou, J. Gou, and D. Hui, 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering 110, 442-458, (2017).7 Ahn, S.H., M. Montero, D. Odell, S. Roundy, and P.K. Wright, Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal 8, 248-257, (2002).8 Mu, Q., L. Wang, C.K. Dunn, X. Kuang, F. Duan, Z. Zhang, H.J. Qi, and T. Wang, Digital light processing 3D printing of conductive complex structures. Additive Manufacturing 18, 74-83, (2017).9 Sun, C., N. Fang, D.M. Wu, and X. Zhang, Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors and Actuators A: Physical 121, 113-120, (2005).10 O’Connor, H.J., A.N. Dickson, and D.P. Dowling, Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Additive Manufacturing 22, 381-387, (2018).11 Habib, F.N., P. Iovenitti, S.H. Masood, and M. Nikzad, Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology. Materials & Design 155, 86-98, (2018).12 Lewis, J.A., Direct Ink Writing of 3D Functional Materials. Advanced Functional Materials 16, 2193-2204, (2006).13 Saadi, M.A.S.R., A. Maguire, N.T. Pottackal, M.S.H. Thakur, M.M. Ikram, A.J. Hart, P.M. Ajayan, and M.M. Rahman, Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Advanced Materials 34, 2108855, (2022).14 Li, L., Q. Lin, M. Tang, A.J.E. Duncan, and C. Ke, Advanced Polymer Designs for Direct-Ink-Write 3D Printing. Chemistry – A European Journal 25, 10768-10781, (2019).15 Wei, C., L. Li, X. Zhang, and Y.-H. Chueh, 3D printing of multiple metallic materials via modified selective laser melting. CIRP Annals 67, 245-248, (2018).16 Aboulkhair, N.T., M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in Materials Science 106, 100578, (2019).17 Xing, J.-F., M.-L. Zheng, and X.-M. Duan, Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chemical Society Reviews 44, 5031-5039, (2015).18 Liu, K., H. Ding, S. Li, Y. Niu, Y. Zeng, J. Zhang, X. Du, and Z. Gu, 3D printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography. Nature Communications 13, 4563, (2022).19 Deubel, M., G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Materials 3, 444-447, (2004).20 Farsari, M. and B.N. Chichkov, Two-photon fabrication. Nature Photonics 3, 450-452, (2009).21 Gissibl, T., S. Thiele, A. Herkommer, and H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560, (2016).22 Maruo, S., O. Nakamura, and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics Letters 22, 132-134, (1997).23 Cordeiro, A.S., I.A. Tekko, M.H. Jomaa, L. Vora, E. McAlister, F. Volpe-Zanutto, M. Nethery, P.T. Baine, N. Mitchell, D.W. McNeill, and R.F. Donnelly, Two-Photon Polymerisation 3D Printing of Microneedle Array Templates with Versatile Designs: Application in the Development of Polymeric Drug Delivery Systems. Pharmaceutical Research 37, 174, (2020).24 Ciuciu, A.I. and P.J. Cywiński, Two-photon polymerization of hydrogels – versatile solutions to fabricate well-defined 3D structures. RSC Advances 4, 45504-45516, (2014).25 Lim, K.S., R. Levato, P.F. Costa, M.D. Castilho, C.R. Alcala-Orozco, K.M.A. van Dorenmalen, F.P.W. Melchels, D. Gawlitta, G.J. Hooper, J. Malda, and T.B.F. Woodfield, Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 10, 034101, (2018).26 Lim, K.S., J.H. Galarraga, X. Cui, G.C.J. Lindberg, J.A. Burdick, and T.B.F. Woodfield, Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chemical Reviews 120, 10662-10694, (2020).27 Fu, Z., L. Ouyang, R. Xu, Y. Yang, and W. Sun, Responsive biomaterials for 3D bioprinting: A review. Materials Today 52, 112-132, (2022).28 Kang, S., S.-Y. Chang, A. Costa, K. Kowsari, and A.W.K. Ma, Additive manufacturing of embedded carbon nanocomposite structures with multi-material digital light processing (MMDLP). Journal of Materials Research 36, 3558-3567, (2021).29 Yang, J., M. Chen, H. Lee, Z. Xu, Z. Zhou, S.-P. Feng, and J.T. Kim, Three-Dimensional Printing of Self-Assembled Dipeptides. ACS Applied Materials & Interfaces 13, 20573-20580, (2021).30 Chen, M., Z. Xu, J.H. Kim, S.K. Seol, and J.T. Kim, Meniscus-on-Demand Parallel 3D Nanoprinting. ACS Nano 12, 4172-4177, (2018).31 Bae, J., S. Kim, J. Ahn, H.H. Sim, M. Wajahat, J.H. Kim, S.-Y. Yoon, J.T. Kim, S.K. Seol, and J. Pyo, Nanoscale 3D Printing of Quantum Dots on Paper. Advanced Engineering Materials 23, 2100339, (2021).32 Chen, M., J. Yang, Z. Wang, Z. Xu, H. Lee, H. Lee, Z. Zhou, S.-P. Feng, S. Lee, J. Pyo, S.K. Seol, D.-K. Ki, and J.T. Kim, 3D Nanoprinting of Perovskites. Advanced Materials 31, 1904073, (2019).33 Kim, J.T., S.K. Seol, J. Pyo, J.S. Lee, J.H. Je, and G. Margaritondo, Three-Dimensional Writing of Conducting Polymer Nanowire Arrays by Meniscus-Guided Polymerization. Advanced Materials 23, 1968-1970, (2011).34 Pyo, J., J.T. Kim, J. Lee, J. Yoo, and J.H. Je, 3D Printed Nanophotonic Waveguides. Advanced Optical Materials 4, 1190-1195, (2016).35 Galliker, P., J. Schneider, H. Eghlidi, S. Kress, V. Sandoghdar, and D. Poulikakos, Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets. Nature Communications 3, 890, (2012).36 Jung, W., P.V. Pikhitsa, Y.-H. Jung, J. Shin, M. Han, and M. Choi, 3D Nanoprinting with Charged Aerosol Particles─An Overview. Accounts of Materials Research 2, 1117-1128, (2021).37 Menard, E., M.A. Meitl, Y. Sun, J.-U. Park, D.J.-L. Shir, Y.-S. Nam, S. Jeon, and J.A. Rogers, Micro- and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems. Chemical Reviews 107, 1117-1160, (2007).38 Xu, Y., F. Zhang, and X. Feng, Patterning of Conjugated Polymers for Organic Optoelectronic Devices. Small 7, 1338-1360, (2011).39 Mir, S.H., L.A. Nagahara, T. Thundat, P. Mokarian-Tabari, H. Furukawa, and A. Khosla, Review—Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. Journal of The Electrochemical Society 165, B3137, (2018).40 Wang, K., K. Amin, Z. An, Z. Cai, H. Chen, H. Chen, Y. Dong, X. Feng, W. Fu, J. Gu, Y. Han, D. Hu, R. Hu, D. Huang, F. Huang, F. Huang, Y. Huang, J. Jin, X. Jin, Q. Li, T. Li, Z. Li, Z. Li, J. Liu, J. Liu, S. Liu, H. Peng, A. Qin, X. Qing, Y. Shen, J. Shi, X. Sun, B. Tong, B. Wang, H. Wang, L. Wang, S. Wang, Z. Wei, T. Xie, C. Xu, H. Xu, Z.-K. Xu, B. Yang, Y. Yu, X. Zeng, X. Zhan, G. Zhang, J. Zhang, M.Q. Zhang, X.-Z. Zhang, X. Zhang, Y. Zhang, Y. Zhang, C. Zhao, W. Zhao, Y. Zhou, Z. Zhou, J. Zhu, X. Zhu, and B.Z. Tang, Advanced functional polymer materials. Materials Chemistry Frontiers 4, 1803-1915, (2020).41 Huang, X., Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 7, 1876-1902, (2011).42 Czaja, A.U., N. Trukhan, and U. Müller, Industrial applications of metal–organic frameworks. Chemical Society Reviews 38, 1284-1293, (2009).43 James, S.L., Metal-organic frameworks. Chemical Society Reviews 32, 276-288, (2003).44 Kurmoo, M., Magnetic metal–organic frameworks. Chemical Society Reviews 38, 1353-1379, (2009).45 Wang, Z. and S.M. Cohen, Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews 38, 1315-1329, (2009).46 Zhou, H.-C.J. and S. Kitagawa, Metal–Organic Frameworks (MOFs). Chemical Society Reviews 43, 5415-5418, (2014).47 Furukawa, H., K.E. Cordova, M. O’Keeffe, and O.M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks. Science 341, 1230444, (2013).48 Geng, K., T. He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, and D. Jiang, Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews 120, 8814-8933, (2020).49 Ding, S.-Y. and W. Wang, Covalent organic frameworks (COFs): from design to applications. Chemical Society Reviews 42, 548-568, (2013).50 Feng, X., X. Ding, and D. Jiang, Covalent organic frameworks. Chemical Society Reviews 41, 6010-6022, (2012).51 Huang, N., P. Wang, and D. Jiang, Covalent organic frameworks: a materials platform for structural and functional designs. Nature Reviews Materials 1, 16068, (2016).52 Gao, P., M. Grätzel, and M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy & Environmental Science 7, 2448-2463, (2014).53 George, A.S., The relaxational properties of compositionally disordered ABO3 perovskites. Journal of Physics: Condensed Matter 15, R367, (2003).54 Hwang, J., R.R. Rao, L. Giordano, Y. Katayama, Y. Yu, and Y. Shao-Horn, Perovskites in catalysis and electrocatalysis. Science 358, 751-756, (2017).55 Messing, G.L., S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P.W. Rehrig, K.B. Eitel, E. Suvaci, M. Seabaugh, and K.S. Oh, Templated Grain Growth of Textured Piezoelectric Ceramics. Critical Reviews in Solid State and Materials Sciences 29, 45-96, (2004).56 Shrout, T.R. and S.J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics 19, 113-126, (2007).57 Hall, D.A., Review Nonlinearity in piezoelectric ceramics. Journal of Materials Science 36, 4575-4601, (2001).58 Jaffe, H., Piezoelectric Ceramics. Journal of the American Ceramic Society 41, 494-498, (1958).59 Duerloo, K.-A.N., M.T. Ong, and E.J. Reed, Intrinsic Piezoelectricity in Two-Dimensional Materials. The Journal of Physical Chemistry Letters 3, 2871-2876, (2012).60 Miró, P., M. Audiffred, and T. Heine, An atlas of two-dimensional materials. Chemical Society Reviews 43, 6537-6554, (2014).61 Xia, F., H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Two-dimensional material nanophotonics. Nature Photonics 8, 899-907, (2014).62 Fiori, G., F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials. Nature Nanotechnology 9, 768-779, (2014).63 Derdour, L. and D. Skliar, Crystallization from Solutions Containing Multiple Conformers. 1. Modeling of Crystal Growth and Supersaturation. Crystal Growth & Design 12, 5180-5187, (2012).64 Tao, S., Z. Wang, L. Wang, X. Li, X. Li, Y. Wang, B. Wang, W. Zi, Y. Wei, K. Chen, Z. Tian, and G. Hou, Solid-State Synthesis of Aluminophosphate Zeotypes by Calcination of Amorphous Precursors. Journal of the American Chemical Society 145, 4860-4870, (2023).65 Rand, B., Calcination, in Concise Encyclopedia of Advanced Ceramic Materials, R.J. Brook, Editor. 1991, Pergamon: Oxford. p. 49-51.66 Wang, D., T. Xie, and Y. Li, Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Research 2, 30-46, (2009).67 Jung, H.S. and N.-G. Park, Perovskite Solar Cells: From Materials to Devices. Small 11, 10-25, (2015).68 Park, N.-G. and K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials 5, 333-350, (2020).69 Li, Z., T.R. Klein, D.H. Kim, M. Yang, J.J. Berry, M.F.A.M. van Hest, and K. Zhu, Scalable fabrication of perovskite solar cells. Nature Reviews Materials 3, 18017, (2018).70 Wang, P., Y. Wu, B. Cai, Q. Ma, X. Zheng, and W.-H. Zhang, Solution-Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials 29, 1807661, (2019).71 Lee, J.-C., J.-O. Kim, H.-J. Lee, B. Shin, and S. Park, Meniscus-Guided Control of Supersaturation for the Crystallization of High Quality Metal Organic Framework Thin Films. Chemistry of Materials 31, 7377-7385, (2019).72 Kim, J.-O., W.-T. Koo, H. Kim, C. Park, T. Lee, C.A. Hutomo, S.Q. Choi, D.S. Kim, I.-D. Kim, and S. Park, Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. Nature Communications 12, 4294, (2021).73 Al-Hada, N.M., E.B. Saion, A.H. Shaari, M.A. Kamarudin, M.H. Flaifel, S.H. Ahmad, and A. Gene, A facile thermal-treatment route to synthesize the semiconductor CdO nanoparticles and effect of calcination. Materials Science in Semiconductor Processing 26, 460-466, (2014).74 Afzal, A., N. Cioffi, L. Sabbatini, and L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sensors and Actuators B: Chemical 171-172, 25-42, (2012).75 Wang, P., Y. Li, and Y. Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. Journal of the European Ceramic Society 31, 2005-2012, (2011).76 Villegas, M., A.C. Caballero, C. Moure, P. Durán, and J.F. Fernández, Factors Affecting the Electrical Conductivity of Donor-Doped Bi4Ti3O12 Piezoelectric Ceramics. Journal of the American Ceramic Society 82, 2411-2416, (1999).77 Avci, C., I. Imaz, A. Carné-Sánchez, J.A. Pariente, N. Tasios, J. Pérez-Carvajal, M.I. Alonso, A. Blanco, M. Dijkstra, C. López, and D. Maspoch, Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures. Nature Chemistry 10, 78-84, (2018).78 Mochalin, V.N., O. Shenderova, D. Ho, and Y. Gogotsi, The properties and applications of nanodiamonds. Nature Nanotechnology 7, 11-23, (2012).79 Hennessy, K., A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, and A. Imamoğlu, Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896-899, (2007).80 Dufresne, A., Nanocellulose: a new ageless bionanomaterial. Materials Today 16, 220-227, (2013).81 Hausmann, M.K., P.A. Rühs, G. Siqueira, J. Läuger, R. Libanori, T. Zimmermann, and A.R. Studart, Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. ACS Nano 12, 6926-6937, (2018).82 Zhou, Y., L. Sun, S. Watanabe, and T. Ando, Recent Advances in the Glass Pipet: from Fundament to Applications. Analytical Chemistry 94, 324-335, (2022).83 Vladisavljević, G.T., H. Shahmohamadi, D.B. Das, E.E. Ekanem, Z. Tauanov, and L. Sharma, Glass capillary microfluidics for production of monodispersed poly (dl-lactic acid) and polycaprolactone microparticles: Experiments and numerical simulations. Journal of Colloid and Interface Science 418, 163-170, (2014).84 Zhou, C., P. Zhu, Y. Tian, X. Tang, R. Shi, and L. Wang, Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers. Lab on a Chip 17, 3310-3317, (2017).85 Wang, J., C. Shao, Y. Wang, L. Sun, and Y. Zhao, Microfluidics for Medical Additive Manufacturing. Engineering 6, 1244-1257, (2020).86 Zhu, C., K. Huang, N.P. Siepser, and L.A. Baker, Scanning Ion Conductance Microscopy. Chemical Reviews 121, 11726-11768, (2021).87 Wang, T., J. Liu, B. Yang, X. Chen, X. Wang, and C. Yang, Optimization of micropipette fabrication by laser micromachining for application in an ultrafine atmospheric pressure plasma jet using response surface methodology. Journal of Micromechanics and Microengineering 26, 065001, (2016).88 Hengsteler, J., G.P.S. Lau, T. Zambelli, and D. Momotenko, Electrochemical 3D micro- and nanoprinting: Current state and future perspective. Electrochemical Science Advances 2, e2100123, (2022).89 Liu, Y., J. Yang, C. Tao, H. Lee, M. Chen, Z. Xu, H. Peng, X. Huan, J. Li, X. Cheng, and J.T. Kim, Meniscus-Guided 3D Microprinting of Pure Metal–Organic Frameworks with High Gas-Uptake Performance. ACS Applied Materials & Interfaces 14, 7184-7191, (2022).90 Reiser, A., M. Lindén, P. Rohner, A. Marchand, H. Galinski, A.S. Sologubenko, J.M. Wheeler, R. Zenobi, D. Poulikakos, and R. Spolenak, Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nature Communications 10, 1853, (2019).91 Park, Y.-G., I. Yun, W.G. Chung, W. Park, D.H. Lee, and J.-U. Park, High-Resolution 3D Printing for Electronics. Advanced Science 9, 2104623, (2022).92 Kim, F., S.E. Yang, H. Ju, S. Choo, J. Lee, G. Kim, S.-h. Jung, S. Kim, C. Cha, K.T. Kim, S. Ahn, H.G. Chae, and J.S. Son, Direct ink writing of three-dimensional thermoelectric microarchitectures. Nature Electronics 4, 579-587, (2021).93 Robertson, I.D., M. Yourdkhani, P.J. Centellas, J.E. Aw, D.G. Ivanoff, E. Goli, E.M. Lloyd, L.M. Dean, N.R. Sottos, P.H. Geubelle, J.S. Moore, and S.R. White, Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557, 223-227, (2018).94 Suryavanshi, A.P., J. Hu, and M.-F. Yu, Meniscus-Controlled Continuous Fabrication of Arrays and Rolls of Extremely Long Micro- and Nano-Fibers. Advanced Materials 20, 793-796, (2008).95 Purves, R.D., The mechanics of pulling a glass micropipette. Biophysical Journal 29, 523-529, (1980).96 Sugiyama, K., W.K. Dong, and E.H. Chudler, A simplified method for manufacturing glass-insulated metal microelectrodes. Journal of Neuroscience Methods 53, 73-80, (1994).97 Danis, L., D. Polcari, A. Kwan, S.M. Gateman, and J. Mauzeroll, Fabrication of Carbon, Gold, Platinum, Silver, and Mercury Ultramicroelectrodes with Controlled Geometry. Analytical Chemistry 87, 2565-2569, (2015).98 Rubio, A., S. Rodríguez, and M.G. Cabezas, Capabilities and Limitations of Fire-Shaping to Produce Glass Nozzles. Materials 13, 5477, (2020).99 Delventhal, R., A. Kiely, and J.R. Carlson Electrophysiological recording from Drosophila labellar taste sensilla. Journal of visualized experiments : JoVE, 2014. e51355 DOI: 10.3791/51355.100 Bafna, J.A. and G.V. Soni, Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing. PLOS ONE 11, e0157399, (2016).101 Gao, G., T. Yonezawa, K. Hubbell, G. Dai, and X. Cui, Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnology Journal 10, 1568-1577, (2015).102 An, B.W., K. Kim, M. Kim, S.-Y. Kim, S.-H. Hur, and J.-U. Park, Direct Printing of Reduced Graphene Oxide on Planar or Highly Curved Surfaces with High Resolutions Using Electrohydrodynamics. Small 11, 2263-2268, (2015).103 Kim, J.H., S. Park, J. Ahn, J. Pyo, H. Kim, N. Kim, I.D. Jung, and S.K. Seol, Meniscus-Guided Micro-Printing of Prussian Blue for Smart Electrochromic Display. Advanced Science 10, 2205588, (2023).104 Xu, Z., L. Wang, X. Huan, H. Lee, J. Yang, Z. Zhou, M. Chen, S. Hu, Y. Liu, S.-P. Feng, T. Zhang, F. Xu, Z. Chu, and J.T. Kim, On-Demand, Direct Printing of Nanodiamonds at the Quantum Level. Advanced Science 9, 2103598, (2022).105 Bowen, I.S., The Ratio of Heat Losses by Conduction and by Evaporation from any Water Surface. Physical Review 27, 779-787, (1926).106 Brown, O.L.I., The Clausius-Clapeyron equation. Journal of Chemical Education 28, 428, (1951).107 Cai, Y. and M. Gevelber, The effect of relative humidity and evaporation rate on electrospinning: fiber diameter and measurement for control implications. Journal of Materials Science 48, 7812-7826, (2013).108 Liu, C., E. Bonaccurso, and H.-J. Butt, Evaporation of sessile water/ethanol drops in a controlled environment. Physical Chemistry Chemical Physics 10, 7150-7157, (2008).109 Kita, Y., Y. Okauchi, Y. Fukatani, D. Orejon, M. Kohno, Y. Takata, and K. Sefiane, Quantifying vapor transfer into evaporating ethanol drops in a humid atmosphere. Physical Chemistry Chemical Physics 20, 19430-19440, (2018).110 Yang, J., X. Huan, Y. Liu, H. Lee, M. Chen, S. Hu, S. Cao, and J.T. Kim, Three-Dimensional Printing of Dipeptides with Spatioselective Programming of Crystallinity for Multilevel Anticounterfeiting. Nano Letters 22, 7776-7783, (2022).111 Li, M., I. Katsouras, C. Piliego, G. Glasser, I. Lieberwirth, P.W.M. Blom, and D.M. de Leeuw, Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. Journal of Materials Chemistry C 1, 7695-7702, (2013).112 Kim, N., X. Huan, U. Yang, J.T. Kim, and J.H. Je, Vapor Mapping in a Microscopic Space with a Scanning Nanoprobe Interferometer. The Journal of Physical Chemistry C 125, 24137-24144, (2021).113 Zhou, Y., M.A. Parkes, J. Zhang, Y. Wang, M. Ruddlesden, H.H. Fielding, and L. Su, Single-crystal organometallic perovskite optical fibers. Science Advances 8, eabq8629, (2022).114 Won, B.J., W. Lee, and S. Song, Estimation of the thermocapillary force and its applications to precise droplet control on a microfluidic chip. Scientific Reports 7, 3062, (2017).115 Sun, Y., L. Wang, Y. Ni, H. Zhang, X. Cui, J. Li, Y. Zhu, J. Liu, S. Zhang, Y. Chen, and M. Li, 3D printing of thermosets with diverse rheological and functional applicabilities. Nature Communications 14, 245, (2023).116 Jain, T., Y.-M. Tseng, C. Tantisuwanno, J. Menefee, A. Shahrokhian, I. Isayeva, and A. Joy, Synthesis, Rheology, and Assessment of 3D Printability of Multifunctional Polyesters for Extrusion-Based Direct-Write 3D Printing. ACS Applied Polymer Materials 3, 6618-6631, (2021).117 Zhao, J., H. Lu, Y. Zhang, S. Yu, O.I. Malyi, X. Zhao, L. Wang, H. Wang, J. Peng, X. Li, Y. Zhang, S. Chen, H. Pan, G. Xing, C. Lu, Y. Tang, and X. Chen, Direct coherent multi-ink printing of fabric supercapacitors. Science Advances 7, eabd6978, (2021).118 Bae, J., S. Lee, J. Ahn, J.H. Kim, M. Wajahat, W.S. Chang, S.-Y. Yoon, J.T. Kim, S.K. Seol, and J. Pyo, 3D-Printed Quantum Dot Nanopixels. ACS Nano 14, 10993-11001, (2020).119 Huan, X., S. Lee, H. Lee, Z. Xu, J. Yang, M. Chen, Y. Liu, and J.T. Kim, One-Step, Continuous Three-Dimensional Printing of Multi-Stimuli-Responsive Bilayer Microactuators via a Double-Barreled Theta Pipette. ACS Applied Materials & Interfaces 13, 43396-43403, (2021).120 Gratson, G.M. and J.A. Lewis, Phase Behavior and Rheological Properties of Polyelectrolyte Inks for Direct-Write Assembly. Langmuir 21, 457-464, (2005).121 Hui, Y., Y. Yao, Q. Qian, J. Luo, H. Chen, Z. Qiao, Y. Yu, L. Tao, and N. Zhou, Three-dimensional printing of soft hydrogel electronics. Nature Electronics 5, 893-903, (2022).122 Kim, W.-G., V. Devaraj, Y. Yang, J.-M. Lee, J.T. Kim, J.-W. Oh, and J. Rho, Three-dimensional plasmonic nanoclusters driven by co-assembly of thermo-plasmonic nanoparticles and colloidal quantum dots. Nanoscale 14, 16450-16457, (2022).123 Tan, A.T.L., J. Beroz, M. Kolle, and A.J. Hart, Direct-Write Freeform Colloidal Assembly. Advanced Materials 30, 1803620, (2018).124 Qi, F., Z. Meng, M. Xue, and L. Qiu, Recent advances in self-assemblies and sensing applications of colloidal photonic crystals. Analytica Chimica Acta 1123, 91-112, (2020).125 Kim, F., B. Kwon, Y. Eom, J.E. Lee, S. Park, S. Jo, S.H. Park, B.-S. Kim, H.J. Im, M.H. Lee, T.S. Min, K.T. Kim, H.G. Chae, W.P. King, and J.S. Son, 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nature Energy 3, 301-309, (2018).126 Dudukovic, N.A., L.L. Wong, D.T. Nguyen, J.F. Destino, T.D. Yee, F.J. Ryerson, T. Suratwala, E.B. Duoss, and R. Dylla-Spears, Predicting Nanoparticle Suspension Viscoelasticity for Multimaterial 3D Printing of Silica–Titania Glass. ACS Applied Nano Materials 1, 4038-4044, (2018).127 Liu, G., M. Hirtz, H. Fuchs, and Z. Zheng, Development of Dip-Pen Nanolithography (DPN) and Its Derivatives. Small 15, 1900564, (2019).128 Liu, G., S.H. Petrosko, Z. Zheng, and C.A. Mirkin, Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chemical Reviews 120, 6009-6047, (2020).129 Lee, H., Z. Wang, Q. Rao, S. Lee, X. Huan, Y. Liu, J. Yang, M. Chen, D.-K. Ki, and J.T. Kim, Additive Manufacturing of Thermoelectric Microdevices for Four-Dimensional Thermometry. Advanced Materials n/a, 2301704, 130 Lee, S., J.H. Kim, M. Wajahat, H. Jeong, W.S. Chang, S.H. Cho, J.T. Kim, and S.K. Seol, Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks. ACS Applied Materials & Interfaces 9, 18918-18924, (2017).131 Kim, J.H., W.S. Chang, D. Kim, J.R. Yang, J.T. Han, G.-W. Lee, J.T. Kim, and S.K. Seol, 3D Printing of Reduced Graphene Oxide Nanowires. Advanced Materials 27, 157-161, (2015).132 Chen, M., Z. Zhou, S. Hu, N. Huang, H. Lee, Y. Liu, J. Yang, X. Huan, Z. Xu, S. Cao, X. Cheng, T. Wang, S.F. Yu, B.P. Chan, J. Tang, S.-P. Feng, and J.T. Kim, 3D Printing of Arbitrary Perovskite Nanowire Heterostructures. Advanced Functional Materials 33, 2212146, (2023).133 Hu, S., X. Huan, Y. Liu, S. Cao, Z. Wang, and J.T. Kim, Recent Advances in Meniscus-on-Demand Three-Dimensional Micro- and Nano-printing for Electronics and Photonics. International Journal of Extreme Manufacturing, (2023).134 Hengsteler, J., B. Mandal, C. van Nisselroy, G.P.S. Lau, T. Schlotter, T. Zambelli, and D. Momotenko, Bringing Electrochemical Three-Dimensional Printing to the Nanoscale. Nano Letters 21, 9093-9101, (2021).135 Hu, W., Y. Ma, Z. Zhan, D. Hussain, and C. Hu, Robotic Intracellular Electrochemical Sensing for Adherent Cells. Cyborg and Bionic Systems 2022, (2022).136 Ji, A., S. Zhang, S. Bhagia, C.G. Yoo, and A.J. Ragauskas, 3D printing of biomass-derived composites: application and characterization approaches. RSC Advances 10, 21698-21723, (2020).137 Park, Y.-G., H.S. An, J.-Y. Kim, and J.-U. Park, High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Science Advances 5, eaaw2844, (2019).138 Neumann, T.V. and M.D. Dickey, Liquid Metal Direct Write and 3D Printing: A Review. Advanced Materials Technologies 5, 2000070, (2020).139 Hu, J. and M.-F. Yu, Meniscus-Confined Three-Dimensional Electrodeposition for Direct Writing of Wire Bonds. Science 329, 313-316, (2010).140 Chen, W.-F., P. Koshy, and C.C. Sorrell, Effects of film topology and contamination as a function of thickness on the photo-induced hydrophilicity of transparent TiO2 thin films deposited on glass substrates by spin coating. Journal of Materials Science 51, 2465-2480, (2016).141 Li, Z., H. Liu, X. Cheng, P. Nie, X. Yang, G. Zheng, H. Su, and W. Jin, Improvement of 3D Printing Cement-Based Material Process: Parameter Experiment and Analysis. Coatings 12, 1973, (2022).142 Comina, G., A. Suska, and D. Filippini, 3D Printed Unibody Lab-on-a-Chip: Features Survey and Check-Valves Integration. Micromachines 6, 437-451, (2015).143 Bhanvadia, A.A., R.T. Farley, Y. Noh, and T. Nishida, High-resolution stereolithography using a static liquid constrained interface. Communications Materials 2, 41, (2021).144 Gu, X., L. Shaw, K. Gu, M.F. Toney, and Z. Bao, The meniscus-guided deposition of semiconducting polymers. Nature Communications 9, 534, (2018).145 Deng, Y., X. Zheng, Y. Bai, Q. Wang, J. Zhao, and J. Huang, Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy 3, 560-566, (2018).146 Doumenc, F. and B. Guerrier, Drying of a Solution in a Meniscus: A Model Coupling the Liquid and the Gas Phases. Langmuir 26, 13959-13967, (2010).147 Faustini, M., B. Louis, P.A. Albouy, M. Kuemmel, and D. Grosso, Preparation of Sol−Gel Films by Dip-Coating in Extreme Conditions. The Journal of Physical Chemistry C 114, 7637-7645, (2010).148 Le Berre, M., Y. Chen, and D. Baigl, From Convective Assembly to Landau−Levich Deposition of Multilayered Phospholipid Films of Controlled Thickness. Langmuir 25, 2554-2557, (2009).149 Niu, X., N. Li, Q. Chen, and H. Zhou, Insights into Large-Scale Fabrication Methods in Perovskite Photovoltaics. Advanced Energy and Sustainability Research 2, 2000046, (2021).150 Park, K.S., J.J. Kwok, R. Dilmurat, G. Qu, P. Kafle, X. Luo, S.-H. Jung, Y. Olivier, J.-K. Lee, J. Mei, D. Beljonne, and Y. Diao, Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow. Science Advances 5, eaaw7757, (2019).151 Lee, S.B., S. Lee, D.G. Kim, S.H. Kim, B. Kang, and K. Cho, Solutal-Marangoni-Flow-Mediated Growth of Patterned Highly Crystalline Organic Semiconductor Thin Film Via Gap-Controlled Bar Coating. Advanced Functional Materials 31, 2100196, (2021).152 Richard, M., A. Al-Ajaji, S. Ren, A. Foti, J. Tran, M. Frigoli, B. Gusarov, Y. Bonnassieux, E.G. Caurel, P. Bulkin, R. Ossikovski, and A. Yassar, Large-scale patterning of π-conjugated materials by meniscus guided coating methods. Advances in Colloid and Interface Science 275, 102080, (2020).153 Urone, P.P. and R. Hinrichs, Viscosity and Laminar Flow; Poiseuille’s Law. College Physics, (2012).154 S P Sutera, a. and R. Skalak, The History of Poiseuille's Law. Annual Review of Fluid Mechanics 25, 1-20, (1993).155 Truesdell, C. and C. Truesdell, Szabò’s Geschichte der Mechanischen Prinzipien und Ihrer Wichtigsten Anwendungen (1979). An Idiot’s Fugitive Essays on Science: Methods, Criticism, Training, Circumstances254-265, (1984).156 Teixeira da Rocha, C., G. Qu, X. Yang, R. Shivhare, M. Hambsch, Y. Diao, and S.C.B. Mannsfeld, Mitigating Meniscus Instabilities in Solution-Sheared Polymer Films for Organic Field-Effect Transistors. ACS Applied Materials & Interfaces 11, 30079-30088, (2019).157 Shi, Z., Y. Zhang, M. Liu, D.A.H. Hanaor, and Y. Gan, Dynamic contact angle hysteresis in liquid bridges. Colloids and Surfaces A: Physicochemical and Engineering Aspects 555, 365-371, (2018).158 Lu, Z., C. Wang, W. Deng, M.T. Achille, J. Jie, and X. Zhang, Meniscus-guided coating of organic crystalline thin films for high-performance organic field-effect transistors. Journal of Materials Chemistry C 8, 9133-9146, (2020).159 Chen, M., B. Peng, S. Huang, and P.K.L. Chan, Understanding the Meniscus-Guided Coating Parameters in Organic Field-Effect-Transistor Fabrications. Advanced Functional Materials 30, 1905963, (2020).160 Li, H., M. Eddaoudi, M. O'Keeffe, and O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276-279, (1999).161 Yaghi, O.M., G. Li, and H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703-706, (1995).162 Reed, D.A., B.K. Keitz, J. Oktawiec, J.A. Mason, T. Runčevski, D.J. Xiao, L.E. Darago, V. Crocellà, S. Bordiga, and J.R. Long, A spin transition mechanism for cooperative adsorption in metal–organic frameworks. Nature 550, 96-100, (2017).163 Zhao, S., Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A.M. Khattak, N.A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, and Z. Tang, Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy 1, 16184, (2016).164 Pan, L., G. Liu, W. Shi, J. Shang, W.R. Leow, Y. Liu, Y. Jiang, S. Li, X. Chen, and R.-W. Li, Mechano-regulated metal–organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nature Communications 9, 3813, (2018).165 Sun, W., X. Tang, Q. Yang, Y. Xu, F. Wu, S. Guo, Y. Zhang, M. Wu, and Y. Wang, Coordination-Induced Interlinked Covalent- and Metal–Organic-Framework Hybrids for Enhanced Lithium Storage. Advanced Materials 31, 1903176, (2019).166 Cui, W.-G., T.-L. Hu, and X.-H. Bu, Metal–Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Advanced Materials 32, 1806445, (2020).167 Chiou, D.-S., H.J. Yu, T.-H. Hung, Q. Lyu, C.-K. Chang, J.S. Lee, L.-C. Lin, and D.-Y. Kang, Highly CO2 Selective Metal–Organic Framework Membranes with Favorable Coulombic Effect. Advanced Functional Materials 31, 2006924, (2021).168 Tian, T., Z. Zeng, D. Vulpe, M.E. Casco, G. Divitini, P.A. Midgley, J. Silvestre-Albero, J.-C. Tan, P.Z. Moghadam, and D. Fairen-Jimenez, A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nature Materials 17, 174-179, (2018).169 Richardson, J.J., B.L. Tardy, J. Guo, K. Liang, O.J. Rojas, and H. Ejima, Continuous Metal–Organic Framework Biomineralization on Cellulose Nanocrystals: Extrusion of Functional Composite Filaments. ACS Sustainable Chemistry & Engineering 7, 6287-6294, (2019).170 A. Grande, C., V. I. Águeda, A. Spjelkavik, and R. Blom, An efficient recipe for formulation of metal-organic Frameworks. Chemical Engineering Science 124, 154-158, (2015).171 Peterson, G.W., J.J. Mahle, T.M. Tovar, and T.H. Epps III, Bent-But-Not-Broken: Reactive Metal-Organic Framework Composites from Elastomeric Phase-Inverted Polymers. Advanced Functional Materials 30, 2005517, (2020).172 Lawson, S., A.-A. Alwakwak, A.A. Rownaghi, and F. Rezaei, Gel–Print–Grow: A New Way of 3D Printing Metal–Organic Frameworks. ACS Applied Materials & Interfaces 12, 56108-56117, (2020).173 Maldonado, N., V.G. Vegas, O. Halevi, J.I. Martínez, P.S. Lee, S. Magdassi, M.T. Wharmby, A.E. Platero-Prats, C. Moreno, F. Zamora, and P. Amo-Ochoa, 3D Printing of a Thermo- and Solvatochromic Composite Material Based on a Cu(II)–Thymine Coordination Polymer with Moisture Sensing Capabilities. Advanced Functional Materials 29, 1808424, (2019).174 Lyu, Z., G.J.H. Lim, R. Guo, Z. Kou, T. Wang, C. Guan, J. Ding, W. Chen, and J. Wang, 3D-Printed MOF-Derived Hierarchically Porous Frameworks for Practical High-Energy Density Li–O2 Batteries. Advanced Functional Materials 29, 1806658, (2019).175 Sultan, S., H.N. Abdelhamid, X. Zou, and A.P. Mathew, CelloMOF: Nanocellulose Enabled 3D Printing of Metal–Organic Frameworks. Advanced Functional Materials 29, 1805372, (2019).176 Lim, G.J.H., Y. Wu, B.B. Shah, J.J. Koh, C.K. Liu, D. Zhao, A.K. Cheetham, J. Wang, and J. Ding, 3D-Printing of Pure Metal–Organic Framework Monoliths. ACS Materials Letters 1, 147-153, (2019).177 Ameloot, R., E. Gobechiya, H. Uji-i, J.A. Martens, J. Hofkens, L. Alaerts, B.F. Sels, and D.E. De Vos, Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions. Advanced Materials 22, 2685-2688, (2010).178 Biemmi, E., C. Scherb, and T. Bein, Oriented Growth of the Metal Organic Framework Cu3(BTC)2(H2O)3·xH2O Tunable with Functionalized Self-Assembled Monolayers. Journal of the American Chemical Society 129, 8054-8055, (2007).179 Berthier, J., D. Gosselin, A. Pham, G. Delapierre, N. Belgacem, and D. Chaussy, Capillary Flow Resistors: Local and Global Resistors. Langmuir 32, 915-921, (2016).180 Usman, K.A.S., J.W. Maina, S. Seyedin, M.T. Conato, L.M. Payawan, L.F. Dumée, and J.M. Razal, Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Materials 12, 58, (2020).181 Wang, Z., J. Wang, M. Li, K. Sun, and C.-j. Liu, Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue. Scientific Reports 4, 5939, (2014).182 Ma, X., L. Wang, H. Wang, J. Deng, Y. Song, Q. Li, X. Li, and A.M. Dietrich, Insights into metal-organic frameworks HKUST-1 adsorption performance for natural organic matter removal from aqueous solution. Journal of Hazardous Materials 424, 126918, (2022).183 Chen, Y., X. Mu, E. Lester, and T. Wu, High efficiency synthesis of HKUST-1 under mild conditions with high BET surface area and CO2 uptake capacity. Progress in Natural Science: Materials International 28, 584-589, (2018).184 Lin, K.-S., A.K. Adhikari, C.-N. Ku, C.-L. Chiang, and H. Kuo, Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. International Journal of Hydrogen Energy 37, 13865-13871, (2012).185 Wang, Q., M. Lian, X. Zhu, and X. Chen, Excellent humidity sensor based on ultrathin HKUST-1 nanosheets. RSC Advances 11, 192-197, (2021).186 Abdallah, A., M. Pauritsch, C. Gasser, F. Stangl, M. Primas, and U. Traussnigg, 3D Printed Capacitive Fluid Level Sensor. Proceedings 2, 861, (2018).187 Banerjee, R., A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, and O.M. Yaghi, High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 319, 939-943, (2008).188 Mohammed, A.K., S. Usgaonkar, F. Kanheerampockil, S. Karak, A. Halder, M. Tharkar, M. Addicoat, T.G. Ajithkumar, and R. Banerjee, Connecting Microscopic Structures, Mesoscale Assemblies, and Macroscopic Architectures in 3D-Printed Hierarchical Porous Covalent Organic Framework Foams. Journal of the American Chemical Society 142, 8252-8261, (2020).189 Jadhav, A. and V.S. Jadhav, A review on 3D printing: An additive manufacturing technology. Materials Today: Proceedings 62, 2094-2099, (2022).190 Zastrow, M., The new 3D printing. Nature 578, 20-23, (2020).191 Chan, H.K., J. Griffin, J.J. Lim, F. Zeng, and A.S. Chiu, The impact of 3D Printing Technology on the supply chain: Manufacturing and legal perspectives. International Journal of Production Economics 205, 156-162, (2018).192 Attaran, M., The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business horizons 60, 677-688, (2017).193 Gopinathan, J. and I. Noh, Recent trends in bioinks for 3D printing. Biomaterials Research 22, 11, (2018).194 Chan, H.K., J. Griffin, J.J. Lim, F. Zeng, and A.S.F. Chiu, The impact of 3D Printing Technology on the supply chain: Manufacturing and legal perspectives. International Journal of Production Economics 205, 156-162, (2018).195 Yeong, W.Y., G.L. Goh, G.D. Goh, S. Lee, J. Altherr, J. Tan, and D. Campolo, 3D printing of soft grippers with multimaterial design: Towards shape conformance and tunable rigidity. Materials Today: Proceedings 70, 525-530, (2022).196 Goh, G.D., G.L. Goh, Z. Lyu, M.Z. Ariffin, W.Y. Yeong, G.Z. Lum, D. Campolo, B.S. Han, and H.Y.A. Wong, 3D Printing of Robotic Soft Grippers: Toward Smart Actuation and Sensing. Advanced Materials Technologies 7, 2101672, (2022).197 Han, D., C. Farino, C. Yang, T. Scott, D. Browe, W. Choi, J.W. Freeman, and H. Lee, Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel. ACS Applied Materials & Interfaces 10, 17512-17518, (2018).198 Tan, H.W., Y.Y.C. Choong, C.N. Kuo, H.Y. Low, and C.K. Chua, 3D printed electronics: Processes, materials and future trends. Progress in Materials Science 127, 100945, (2022).199 Kamyshny, A. and S. Magdassi, Conductive nanomaterials for 2D and 3D printed flexible electronics. Chemical Society Reviews 48, 1712-1740, (2019).200 Zhu, Y., T. Tang, S. Zhao, D. Joralmon, Z. Poit, B. Ahire, S. Keshav, A.R. Raje, J. Blair, Z. Zhang, and X. Li, Recent advancements and applications in 3D printing of functional optics. Additive Manufacturing 52, 102682, (2022).201 Nocentini, S., D. Martella, C. Parmeggiani, and D.S. Wiersma, 3D Printed Photoresponsive Materials for Photonics. Advanced Optical Materials 7, 1900156, (2019).202 Juodkazis, S., 3D printed micro-optics. Nature Photonics 10, 499-501, (2016).203 Lee, G.-H., Y.R. Lee, H. Kim, D.A. Kwon, H. Kim, C. Yang, S.Q. Choi, S. Park, J.-W. Jeong, and S. Park, Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nature Communications 13, 2643, (2022).204 Seol, S.K., D. Kim, S. Lee, J.H. Kim, W.S. Chang, and J.T. Kim, Electrodeposition-based 3D Printing of Metallic Microarchitectures with Controlled Internal Structures. Small 11, 3896-3902, (2015).205 Lee, S., M. Wajahat, J.H. Kim, J. Pyo, W.S. Chang, S.H. Cho, J.T. Kim, and S.K. Seol, Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics. ACS Applied Materials & Interfaces 11, 7123-7130, (2019).206 Yuk, H., B. Lu, S. Lin, K. Qu, J. Xu, J. Luo, and X. Zhao, 3D printing of conducting polymers. Nature Communications 11, 1604, (2020).207 Zhao, B., V.S. Sivasankar, S.K. Subudhi, S. Sinha, A. Dasgupta, and S. Das, Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks. Nanoscale 14, 14858-14894, (2022).208 Chang, W.S., H. Jeong, J.H. Kim, S. Lee, M. Wajahat, J.T. Han, S.H. Cho, and S.K. Seol, Micropatterning of reduced graphene oxide by meniscus-guided printing. Carbon 123, 364-370, (2017).209 Kim, J.H., S. Lee, M. Wajahat, H. Jeong, W.S. Chang, H.J. Jeong, J.-R. Yang, J.T. Kim, and S.K. Seol, Three-Dimensional Printing of Highly Conductive Carbon Nanotube Microarchitectures with Fluid Ink. ACS Nano 10, 8879-8887, (2016).210 Chen, M., S. Hu, Z. Zhou, N. Huang, S. Lee, Y. Zhang, R. Cheng, J. Yang, Z. Xu, Y. Liu, H. Lee, X. Huan, S.-P. Feng, H.C. Shum, B.P. Chan, S.K. Seol, J. Pyo, and J. Tae Kim, Three-Dimensional Perovskite Nanopixels for Ultrahigh-Resolution Color Displays and Multilevel Anticounterfeiting. Nano Letters 21, 5186-5194, (2021).211 Chen, M., Z. Zhou, S. Hu, N. Huang, H. Lee, Y. Liu, J. Yang, X. Huan, Z. Xu, S. Cao, X. Cheng, T. Wang, S.F. Yu, B.P. Chan, J. Tang, S.-P. Feng, and J.T. Kim, 3D Printing of Arbitrary Perovskite Nanowire Heterostructures. Advanced Functional Materials n/a, 2212146, 212 Thomas, S.R., P. Pattanasattayavong, and T.D. Anthopoulos, Solution-processable metal oxide semiconductors for thin-film transistor applications. Chemical Society Reviews 42, 6910-6923, (2013).213 Chan, S.H.S., T. Yeong Wu, J.C. Juan, and C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. Journal of Chemical Technology & Biotechnology 86, 1130-1158, (2011).214 Comini, E., C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Progress in Materials Science 54, 1-67, (2009).215 Şerban, I. and A. Enesca, Metal Oxides-Based Semiconductors for Biosensors Applications. Frontiers in Chemistry 8, (2020).216 Comini, E., Metal oxide nanowire chemical sensors: innovation and quality of life. Materials Today 19, 559-567, (2016).217 Rim, Y.S., S.-H. Bae, H. Chen, J.L. Yang, J. Kim, A.M. Andrews, P.S. Weiss, Y. Yang, and H.-R. Tseng, Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors. ACS Nano 9, 12174-12181, (2015).218 Bai, L., H. Huang, S. Yu, D. Zhang, H. Huang, and Y. Zhang, Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors. Journal of Energy Chemistry 64, 214-235, (2022).219 Nguyen, T. and M.d.F. Montemor, Metal Oxide and Hydroxide–Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need-Tailored Devices. Advanced Science 6, 1801797, (2019).220 Zhang, Y., L. Li, H. Su, W. Huang, and X. Dong, Binary metal oxide: advanced energy storage materials in supercapacitors. Journal of Materials Chemistry A 3, 43-59, (2015).221 Shi, F., L. Li, X.-l. Wang, C.-d. Gu, and J.-p. Tu, Metal oxide/hydroxide-based materials for supercapacitors. RSC Advances 4, 41910-41921, (2014).222 Zhou, G., W. Ding, Y. Guan, T. Wang, C. Liu, L. Zhang, J. Yin, and Y. Fu, Progress of NiO-Based Anodes for High-Performance Li-Ion Batteries. The Chemical Record 22, e202200111, (2022).223 Amini, K., J. Gostick, and M.D. Pritzker, Metal and Metal Oxide Electrocatalysts for Redox Flow Batteries. Advanced Functional Materials 30, 1910564, (2020).224 Mei, J., T. Liao, L. Kou, and Z. Sun, Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries. Advanced Materials 29, 1700176, (2017).225 Rosman, N.N., R.M. Yunus, N.R.A.M. Shah, R.M. Shah, K. Arifin, L.J. Minggu, and N.A. Ludin, An overview of co-catalysts on metal oxides for photocatalytic water splitting. International Journal of Energy Research 46, 11596-11619, (2022).226 Védrine, J.C., Heterogeneous Catalysis on Metal Oxides. Catalysts 7, 341, (2017).227 Sivula, K., Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis. The Journal of Physical Chemistry Letters 4, 1624-1633, (2013).228 Sadanand, M. Patel, N. Kumar, W. Lee, and J. Kim, New Concepts in All-Metal-Oxide-Based Ultraviolet Transparent Photovoltaics. IEEE Transactions on Electron Devices 69, 5021-5027, (2022).229 Rühle, S., A.Y. Anderson, H.-N. Barad, B. Kupfer, Y. Bouhadana, E. Rosh-Hodesh, and A. Zaban, All-Oxide Photovoltaics. The Journal of Physical Chemistry Letters 3, 3755-3764, (2012).230 Zhao, X., Q. Li, L. Xu, Z. Zhang, Z. Kang, Q. Liao, and Y. Zhang, Interface Engineering in 1D ZnO-Based Heterostructures for Photoelectrical Devices. Advanced Functional Materials 32, 2106887, (2022).231 Yang, B., N.V. Myung, and T.-T. Tran, 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. Advanced Electronic Materials 7, 2100271, (2021).232 Wang, X., Z. Li, J. Shi, and Y. Yu, One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts. Chemical Reviews 114, 9346-9384, (2014).233 Comini, E. and G. Sberveglieri, Metal oxide nanowires as chemical sensors. Materials Today 13, 36-44, (2010).234 Xia, Y., P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials 15, 353-389, (2003).235 Han, U.-B. and J.-S. Lee, Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory. Scientific Reports 6, 25537, (2016).236 Müller, R., F. Hernandez-Ramirez, H. Shen, H. Du, W. Mader, and S. Mathur, Influence of Precursor Chemistry on Morphology and Composition of CVD-Grown SnO2 Nanowires. Chemistry of Materials 24, 4028-4035, (2012).237 Lee, S.H., G. Jo, W. Park, S. Lee, Y.-S. Kim, B.K. Cho, T. Lee, and W.B. Kim, Diameter-Engineered SnO2 Nanowires over Contact-Printed Gold Nanodots Using Size-Controlled Carbon Nanopost Array Stamps. ACS Nano 4, 1829-1836, (2010).238 Sinju, K.R., B.K. Bhangare, S.J. Patil, N.S. Ramgir, A.K. Debnath, and D.K. Aswal, 4 - Multiarray nanopatterned (top-down nanolithography) e-nose, in Nanotechnology-Based E-noses, R.K. Gupta, et al., Editors. 2023, Woodhead Publishing. p. 101-124.239 Sun, K., I. Zeimpekis, C. Hu, N.M.J. Ditshego, O. Thomas, M.R.R. de Planque, H.M.H. Chong, H. Morgan, and P. Ashburn, Low-cost top-down zinc oxide nanowire sensors through a highly transferable ion beam etching for healthcare applications. Microelectronic Engineering 153, 96-100, (2016).240 Liu, H., H. Peng, K. Li, L. Lu, J. Deng, Y. Liu, C. Qiu, G. Li, and X. Cheng, Transfer Printing of Solution-Processed 3D ZnO Nanostructures with Ultra-High Yield for Flexible Metasurface Color Filter. Advanced Materials Interfaces 9, 2101963, (2022).241 Liu, H., D. Quan, K. Li, Y. Zheng, F. Lou, S. Liu, Y. Liu, A.K. Srivastava, G. Li, C. Qiu, Z. Liu, and X. Cheng, Dielectric Metasurface from Solution-Phase Epitaxy of ZnO Nanorods for Subtractive Color Filter Application. Advanced Optical Materials 9, 2001670, (2021).242 Dou, X., G. Li, W. Zhang, F. Lu, D. Luo, W. Liu, A. Yu, and Z. Chen, Fast production of zinc–hexamethylenetetramine complex microflowers as an advanced sulfur reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A 8, 5062-5069, (2020).243 Asano, N., S. Sugihara, S.-i. Suye, and S. Fujita, Electrospun Porous Nanofibers with Imprinted Patterns Induced by Phase Separation of Immiscible Polymer Blends. ACS Omega 7, 19997-20005, (2022).244 Flores-Carrasco, G., J. Carrillo-López, R. Martínez-Martínez, N.D. Espinosa-Torres, L. Muñoz, O. Milosevic, and M.E. Rabanal, Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method. Applied Physics A 122, 173, (2016).245 Horzum, N., M.E. Hilal, and T. Isık, Enhanced bactericidal and photocatalytic activities of ZnO nanostructures by changing the cooling route. New Journal of Chemistry 42, 11831-11838, (2018).246 Liu, C., H. Tai, P. Zhang, Z. Ye, Y. Su, and Y. Jiang, Enhanced ammonia-sensing properties of PANI-TiO2-Au ternary self-assembly nanocomposite thin film at room temperature. Sensors and Actuators B: Chemical 246, 85-95, (2017).247 Liu, X.-L., S.-X. Ma, S.-W. Zhu, Y. Zhao, X.-J. Ning, L. Zhao, and J. Zhuang, Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyperdoped silicon. Sensors and Actuators B: Chemical 291, 345-353, (2019).248 Seekaew, Y., W. Pon-On, and C. Wongchoosuk, Ultrahigh Selective Room-Temperature Ammonia Gas Sensor Based on Tin–Titanium Dioxide/reduced Graphene/Carbon Nanotube Nanocomposites by the Solvothermal Method. ACS Omega 4, 16916-16924, (2019).249 Zhou, Y., X. Li, Y. Wang, H. Tai, and Y. Guo, UV Illumination-Enhanced Molecular Ammonia Detection Based On a Ternary-Reduced Graphene Oxide–Titanium Dioxide–Au Composite Film at Room Temperature. Analytical Chemistry 91, 3311-3318, (2019).250 Cho, I., Y.C. Sim, M. Cho, Y.-H. Cho, and I. Park, Monolithic Micro Light-Emitting Diode/Metal Oxide Nanowire Gas Sensor with Microwatt-Level Power Consumption. ACS Sensors 5, 563-570, (2020).251 Kim, K., P.g. Choi, T. Itoh, and Y. Masuda, Catalyst-free Highly Sensitive SnO2 Nanosheet Gas Sensors for Parts per Billion-Level Detection of Acetone. ACS Applied Materials & Interfaces 12, 51637-51644, (2020).252 Nguyen, H., C.T. Quy, N.D. Hoa, N.T. Lam, N.V. Duy, V.V. Quang, and N.V. Hieu, Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors. Sensors and Actuators B: Chemical 193, 888-894, (2014).253 Pan, F., H. Lin, H. Zhai, Z. Miao, Y. Zhang, K. Xu, B. Guan, H. Huang, and H. Zhang, Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing. Sensors and Actuators B: Chemical 261, 451-459, (2018).254 Su, P.-G., F.-Y. Chen, and C.-H. Wei, Simple one-pot polyol synthesis of Pd nanoparticles, TiO2 microrods and reduced graphene oxide ternary composite for sensing NH3 gas at room temperature. Sensors and Actuators B: Chemical 254, 1125-1132, (2018).255 Wu, H., H. Huang, J. Zhou, D. Hong, M. Ikram, A.U. Rehman, L. Li, and K. Shi, One-step Synthesis of Ordered Pd@TiO2 Nanofibers Array Film as Outstanding NH3 Gas Sensor at Room Temperature. Scientific Reports 7, 14688, (2017).256 Guo, M., N. Luo, Y. Chen, Y. Fan, X. Wang, and J. Xu, Fast-response MEMS xylene gas sensor based on CuO/WO3 hierarchical structure. Journal of Hazardous Materials 429, 127471, (2022).257 Chen, Y., M. Li, W. Yan, X. Zhuang, K.W. Ng, and X. Cheng, Sensitive and Low-Power Metal Oxide Gas Sensors with a Low-Cost Microelectromechanical Heater. ACS Omega 6, 1216-1222, (2021).258 Im, D., D. Kim, D. Jeong, W.I. Park, M. Chun, J.-S. Park, H. Kim, and H. Jung, Improved formaldehyde gas sensing properties of well-controlled Au nanoparticle-decorated In2O3 nanofibers integrated on low power MEMS platform. Journal of Materials Science and Technology 38, 56-63, (2020).259 Liu, J., L. Zhang, B. Cheng, J. Fan, and J. Yu, A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions. Journal of Hazardous Materials 413, 125352, (2021).260 Huang, B., C. Zhao, M. Zhang, Z. Zhang, E. Xie, J. Zhou, and W. Han, Doping effect of In2O3 on structural and ethanol-sensing characteristics of ZnO nanotubes fabricated by electrospinning. Applied Surface Science 349, 615-621, (2015).261 Duan, Y., L. Pirolli, and A.V. Teplyakov, Investigation of the H2S poisoning process for sensing composite material based on carbon nanotubes and metal oxides. Sensors and Actuators B: Chemical 235, 213-221, (2016).262 Hong, D.U., C.-H. Han, S.H. Park, I.-J. Kim, J. Gwak, S.-D. Han, and H.J. Kim, Recovery properties of hydrogen gas sensor with Pd/titanate and Pt/titanate nanotubes photo-catalyst by UV radiation from catalytic poisoning of H2S. Current Applied Physics 9, 172-178, (2009).263 Li, C.-Y., C.-Y. Li, Y.-L. Wu, C.-P. Hsu, M.-C. Lee, and M.-P. Houng, The fabrication of high sensitivity gold nanorod H2S gas sensors utilizing the highly uniform anodic aluminum oxide template. AIP Advances 6, 125002, (2016).264 Zhu, L.-Y., L.-X. Ou, L.-W. Mao, X.-Y. Wu, Y.-P. Liu, and H.-L. Lu, Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview. Nano-Micro Letters 15, 89, (2023).265 Gao, J., B. Wu, C. Cao, Z. Zhan, W. Ma, and X. Wang, Unraveling the Dynamic Evolution of Pd Species on Pd-Loaded ZnO Nanorods for Different Hydrogen Sensing Behaviors. ACS Sustainable Chemistry & Engineering 9, 6370-6379, (2021).266 Wang, C., Y. Zhang, X. Sun, Y. Sun, F. Liu, X. Yan, C. Wang, P. Sun, and G. Lu, Preparation of Pd/PdO loaded WO3 microspheres for H2S detection. Sensors and Actuators B: Chemical 321, 128629, (2020).267 Liu, X., S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, A Survey on Gas Sensing Technology. Sensors 12, 9635-9665, (2012).268 Liu, T., L. Guo, M. Wang, C. Su, D. Wang, H. Dong, J. Chen, and W. Wu, Review on Algorithm Design in Electronic Noses: Challenges, Status, and Trends. Intelligent Computing 2, 0012, (2023).269 Khan, I., K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12, 908-931, (2019).

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559079
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
Liu Y. 3D micro/nano printing of functional crystal materials[D]. 香港. 香港大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11950023-刘羽-材料科学与工程系(6943KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[刘羽]的文章
百度学术
百度学术中相似的文章
[刘羽]的文章
必应学术
必应学术中相似的文章
[刘羽]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。