中文版 | English
题名

Black Holes And Quantum Effects

姓名
姓名拼音
Ali Akil
学号
11851017
学位类型
博士
学位专业
Physics
导师
Leonardo Modesto
导师单位
物理系
外机构导师
WANG Yi
论文答辩日期
2023-06
论文提交日期
2023-09-19
学位授予单位
Hong Kong University of Science and Technology
学位授予地点
Hong Kong
摘要

This thesis explores instances of the intersection of quantum mechanics and gravity using tools from quantum information theory to apply it to gravity. We investigate the consistency of Hawking’s black hole evaporation process with fundamental physical principles such as unitarity, no-signaling, entanglement monogamy, and the equivalence principle.
The analysis suggests that standard quantum theory and general relativity can account for the entire state consisting of matter and radiation, which remains pure at any stage of the evaporation process. Furthermore, the final state after the full black hole evaporation is pure and in one-to-one correspondence with the initial state forming the black hole, indicating no information loss. We introduce controlled squeezing operators and show that after every squeezing the probability that the black hole evaporates increases. We show as well that the evaporation process is a combination of controlled squeezing and scattering S-matrices.

The singularity inside the black hole, however, can prevent the unitary scattering from happening. To address the singularity issue, the second chapter derives the gravitational field and the spacetime metric generated by sources in quantum superposition of different locations. We there adopt two independent constructions, the first of which promotes the potential to an operator and lets it act on the matter state, then covariant uplifting its expectation value to derive the radial and temporal components of the metric. The second approach writes down a joint superposition state for the matter and the corresponding spacetime metric, assuming that in each branch of the matter’s superposition the spacetime metric’s state follows GR and is fully determined by the Einstein equations. The The resulting quantum corrected effective metric is consistent with that obtain with the first method, but augments it in that it derives the angular components as well. In both cases we work out the example of the matter is in a Gaussian state, with a certain width that we call R. The physical system that the metric represents will differ depending on the width of the Gaussian relative to its would-be Schwarzschild horizon. The solutions will

be categorized in three families according to whether the width is larger than rs, equal, or smaller. This study provides a detailed exploration of the geometric and thermodynamic properties of the spacetime structure for the three families of models, including nonsingular black holes, one-way wormholes with a critical null throat, and traversable wormholes.
Despite suggesting a way to smear out the singularity, there are other difficulties that might prevent the process that we described to happen. For instance, there are suggestions in the literature that quantum states decohere near a black hole. This decoherence or loss of quantumness can cause loss of information. For this reason,our third chapter investigates the degradation in the performance of quantum communication protocols that take place near a black hole due to quantum information being lost beyond the event horizon. However, the study shows that when the quantum nature of a black hole and its spacetime are taken into account, their quantum properties can be used as resources to limit the amount of quantum information loss, improving the performance of quantum communication protocols. This project extends the scope of recent results in quantum foundations on the coherent control of quantum channels, indicating that quantum features of spacetime could serve as resources for quantum information processing.
Finally, In order to probe the inside of the black hole, one looks for the quantum corrections of the stress energy tensor behind the event horizon. In order to compute those quantum corrections one can make use of its equivalence with the one-loop corrected effective action, or in simpler cases the effective potential. However, this effective potential is known to be gauge dependent. The fourth chapter highlights the necessity of resolving the apparent gauge dependence in the quantum corrections of cosmological observables for Higgs-like inflation models. We propose a practical shortcut to gauge-independent inflationary observables by using effective potential obtained from a polar-like background current choice. This study demonstrates this shortcut for several explicit examples and presents a gauge-independent prediction of inflationary observables in the Abelian Higgs model. Furthermore, the authors show that for any theory to all orders, the use of a gauge-invariant current term gives a gauge-independent effective potential and thus gauge-invariant inflationary observables. Together, these projects contribute to a better understanding of the interaction between quantum mechanics and gravity and provide insights into the quantum nature of black holes, spacetime, and inflationary observables.
The thesis often uses tools from quantum information theory to explore the intersection of quantum mechanics and gravity, taking a conservative approach to combining quantum mechanics and gravity, exploring the possibility of further quantum corrections or more accurately adding more quantumness to classical and semi-classical scenarios.

 

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2023-09
参考文献列表
[1] Tye, S. & Vtorov-Karevsky, Y. Effective action of spontaneously broken gauge the-ories. Int. J. Mod. Phys. A. 13 pp. 95-124 (1998)
[2] A. Akil, O. Dahlsten and L. Modesto, “Conditional entanglement transfer via black holes: restoring predictability,” New J. Phys. 23, no.11, 113011 (2021) doi:10.1088/1367-2630/ac17bb
[3] Hawking, S. Particle creation by black holes. Commun. Math. Phys.. 43 pp. 199 (1975), https://doi.org/10.1007/bf02345020
[4] Hawking, S. . Commun. Math. Phys. 46 pp. 206 (1976), https://doi.org/10.1007/bf01608497
[5] Hawking, S. Black holes and thermodynamics. Phys. Rev. D. 13 pp. 191 (1976), https://doi.org/10.1103/physrevd.13.191
[6] Susskind, L. & Lindesay, J. The Holographic Universe. (World Scientific,2005)
[7] Alessandro Fabbri, Jose Navarro-Salas, Modeling Black Hole Evaporation, Imperial College Press, (2005).
[8] Stephen W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D 14, 2460 (1976).
[9] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum In-formation, Cambridge, (2000).
[10] Don N. Page, “Black hole information,” hep-th/9305040 (1993).
[11] Quantum Gravity, Edited by Moisei A. Markov and Peter C. West, (1981).
[12] Modesto, L., Moffat, J. & Nicolini, P. Black holes in an ultravio-let complete quantum gravity. Phys. Lett. B. 695 pp. 397 (2011), https://doi.org/10.1016/j.physletb.2010.11.046
[13] Bambi, C., Malafarina, D. & Modesto, L. Black supernovae and black holes in non-local gravity. J. High Energy Phys.. (2016), https://doi.org/10.1007/jhep04(2016)147
[14] Lorenzo, T. & Perez, A. Improved black hole fireworks: asymmet-ric black-hole-to-white-hole tunneling scenario. Phys. Rev. D. 93 (2016), https://doi.org/10.1103/physrevd.93.124018
[15] Bianchi, E., Christodoulou, M., D’Ambrosio, F., Rovelli, C. & Haggard, H. White holes as remnants: a surprising scenario for the end of a black hole. (2018),(arXiv:1802.04264 [gr-qc])
[16] Kapustin, A. Is there life beyond quantum mechanics?. (2013), (arXiv:1303.6917 [quant-ph])
[17] Horowitz, G. & Maldacena, J. The Black hole final state. J. High Energy Phys..(2004), https://doi.org/10.1088/1126-6708/2004/02/008
[18] Lloyd, S. & Preskill, J. Unitarity of black hole evaporation in final-state projection models. J. High Energ. Phys.. (2014), https://doi.org/10.1007/jhep08(2014)126
[19] Giddings, S. Nonviolent nonlocality. Phys. Rev. D. 88 (2013), https://doi.org/10.1103/physrevd.88.064023
[20] Mueller, M., Oppenheim, J., Dahlsten, O., Oppenheim, J. & Dahlsten, O. The black hole information problem beyond quantum theory. J. High Energy Phys.. (2012), https://doi.org/10.1007/jhep09(2012)116
[21] Page, D. Information in black hole radiation. Phys. Rev. Lett.. 71 pp. 3743 (1993), https://doi.org/10.1103/physrevlett.71.3743
[22] Page, D. Average entropy of a subsystem. Phys. Rev. Lett.. 71 pp. 1291 (1993), https://doi.org/10.1103/physrevlett.71.1291
[23] Coffman, V., Kundu, J. & Wootters, W. Distributed entanglement. Phys. Rev. A. 61 (2000), https://doi.org/10.1103/physreva.61.052306
[24] Mathur, S. The Information paradox: a pedagogical introduction. Class. Quantum Grav.. 26 (2009), https://doi.org/10.1088/0264-9381/26/22/224001
[25] Susskind, L., Thorlacius, L. & Uglum, J. The Stretched horizon and black hole complementarity. Phys. Rev. D. 48 pp. 3743 (1993), https://doi.org/10.1103/physrevd.48.3743
[26] Almheiri, A., Marolf, D., Polchinski, J. & Sully, J. Black holes: complementarity or firewalls?. J. High Energy Phys.. (2013), https://doi.org/10.1007/jhep02(2013)062
[27] Braunstein, S., Pirandola, S. & Życzkowski, K. Better late than never: information retrieval from black holes. Phys. Rev. Lett.. 110 (2013), https://doi.org/10.1103/physrevlett.110.101301
[28] Verlinde, E. & Verlinde, H. Passing through the firewall. (2013), (arXiv:1306.0515 [hep-th])
[29] Hossenfelder, S. Disentangling the black hole vacuum. Phys. Rev. D. 91 (2015), https://doi.org/10.1103/physrevd.91.044015
[30] Tokusumi, T., Matsumura, A. & Nambu, Y. Quantum circuit model of black hole evaporation. Class. Quantum Grav.. 35 (2018), https://doi.org/10.1088/1361-6382/aaeb5a
[31] Žukowski, M., Zeilinger, A., Horne, M. & Ekert, A. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett.. 71 pp. 4287-4290 (1993), https://doi.org/10.1103/physrevlett.71.4287
[32] X-Ma, Zotter, S., Kofler, J., Ursin, R., Jennewein, T., Brukner, Č. & Zeilinger, A. Experimental delayed-choice entanglement swapping. (2012), (arXiv:1203.4834v1)
[33] Pan, J., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett.. 80 pp. 3891-3894 (1998), https://doi.org/10.1103/physrevlett.80.3891
[34] Riebe, M. & Others Deterministic quantum teleportation with atoms. Nature. 429 pp. 734-737 (2004), https://doi.org/10.1038/nature02570
[35] Barrett, M. & Others Deterministic quantum teleportation of atomic qubits. Nature. 429 pp. 737 (2004), https://doi.org/10.1038/nature02608
[36] Matsukevich, D., Maunz, P., Moehring, D., Olmschenk, S. & Monroe, C. Bell in-equality violation with two remote atomic qubits. Phys. Rev. Lett.. 100 (2008), https://doi.org/10.1103/physrevlett.100.150404
[37] Halder, M., Beveratos, A., Gisin, N., Scarani, V., Simon, C. & Zbinden, H. Entan-gling independent photons by time measurement. Nat. Phys.. 3 pp. 692-695 (2007), https://doi.org/10.1038/nphys700
[38] Yuan, Z., Chen, Y., Zhao, B., Chen, S., Schmiedmayer, J. & Pan, J. Experimental demonstration of a BDCZ quantum repeater node. Nature. 454 pp. 1098-1101 (2008), https://doi.org/10.1038/nature07241
[39] Kaltenbaek, R., Prevedel, R., Aspelmeyer, M. & Zeilinger, A. High-fidelity en-tanglement swapping with fully independent sources. Phys. Rev. A.. 79 (2009), https://doi.org/10.1103/physreva.79.040302
[40] Briegel, H., Dür, W., Cirac, J. & Zoller, P. . Phys. Rev. Lett.. 81 pp. 5932 (1998), https://doi.org/10.1103/physrevlett.81.5932
[41] Polkinghorne, R. & Ralph, T. Entanglement swapping using continuous variables.(1999), (arXiv:quant-ph/9906066)
[42] Tan, S. Confirming entanglement in continuous variable quantum teleportation. Phys. Rev. A. 60 pp. 2752 (1999), https://doi.org/10.1103/physreva.60.2752
[43] Loock, P. & Braunstein, S. Unconditional teleportation of continuous-variable en-tanglement. Phys. Rev. A. 61 (1999), https://doi.org/10.1103/physreva.61.010302
[44] Braunstein, S. & Loock, P. Quantum information with continuous variables. Rev. Mod. Phys.. 77 pp. 513 (2005), https://doi.org/10.1103/revmodphys.77.513
[45] Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N., Ralph, T., Shapiro, J. & Lloyd, S. Gaussian quantum information. Rev. Mod. Phys.. 84 pp. 621 (2012), https://doi.org/10.1103/revmodphys.84.621
[46] Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A. & Braunstein, S. Advances in quantum teleportation. Nat. Photon.. 9 pp. 641-652 (2015), https://doi.org/10.1038/nphoton.2015.154
[47] Bekenstein, J. Black holes and entropy. Phys. Rev. D. pp. 2333-2346 (1973), https://doi.org/10.1103/physrevd.7.2333
[48] Nicolini, P. Noncommutative black holes, the final appeal to quan-tum gravity: a review. Int. J. Mod. Phys. A. 24 pp. 1229 (2009), https://doi.org/10.1142/s0217751x09043353
[49] Modesto, L. Disappearance of the black hole singularity in loop quantum gravity. Phys. Rev. D. 70 (2004), https://doi.org/10.1103/physrevd.70.124009
[50] Sabine Hossenfelder, Leonardo Modesto and Isabeau Premont-Schwarz, “A Model for non-singular black hole collapse and evaporation,” Phys. Rev. D 81, 044036 (2010)[arXiv:0912.1823 [gr-qc]].
[51] Hooft, G. Local conformal symmetry in black holes, standard model, and quantum gravity. Int. J. Mod. Phys. D. 26 pp. 1730006 (2016), https://doi.org/10.1142/s0218271817300063
[52] Bambi, C., Modesto, L., Porey, S. & Rachwał, L. Black hole evaporation in con-formal gravity. J. Cosmol. Astropart. Phys.. (2017), https://doi.org/10.1088/1475-7516/2017/09/033
[53] Bambi, C., Modesto, L. & Rachwał, L. Spacetime completeness of non-singular black holes in conformal gravity. J. Cosmol. Astropart. Phys.. (2017), https://doi.org/10.1088/1475-7516/2017/05/003
[54] Brustein, R. & Medved, A. Non-singular black holes interiors need physics beyond the standard model. (2019), (arXiv:1902.07990 [hep-th])
[55] Balasin, H. & Nachbagauer, H. The energy-momentum tensor of a black hole, or what curves the Schwarzschild geometry?. Class. Quantum Grav.. 10 pp. 2271 (1993), https://doi.org/10.1088/0264-9381/10/11/010
[56] Narlikar, J. & Kembhavi, A. Space-time singularities and conformal gravity. Lett. Nuovo Cimento. 19 pp. 517 (1977), https://doi.org/10.1007/BF02748215
[57] Modesto, L. & Rachwal, L. Finite conformal quantum gravity and nonsingular space-times. (2016), (arXiv:1605.04173 [hep-th])
[58] Bambi, C., Cao, Z. & Modesto, L. Testing conformal gravity with astrophysical black holes. Phys. Rev. D. 95 (2017), https://doi.org/10.1103/physrevd.95.064006
[59] Chakrabarty, H., Benavides-Gallego, C., Bambi, C. & Modesto, L. Unattainable extended spacetime regions in conformal gravity. J. High Energy Phys.. (2018), https://doi.org/10.1007/jhep03(2018)013
[60] Birrell, N. & Davies, P. Quantum Fields in Curved Space. (Cambridge University Press,1994)
[61] A. Akil, M. Cadoni, L. Modesto, M. Oi and A. P. Sanna, “Semiclassical spacetimes at super-Planckian scales from delocalized sources,” [arXiv:2211.01657 [gr-qc]].
[62] Hawking, S. Particle Creation by Black Holes. Commun. Math. Phys.. 43 pp. 199-220 (1975), [Erratum: Commun.Math.Phys. 46, 206 (1976)]
[63] Fabbri, A. & Navarro-Salas, J. Modeling black hole evaporation. (2005)
[64] Townsend, P. Black holes: Lecture notes. (1997,7)
[65] Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett.. 14 pp. 57-59 (1965)
[66] Hawking, S. & Penrose, R. The Singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond. A. 314 pp. 529-548 (1970)
[67] Penrose, R. Gravitational collapse: The role of general relativity. Riv. Nuovo Cim.. 1 pp. 252-276 (1969)
[68] Hawking, S. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D. 14 pp. 2460-2473 (1976)
[69] Page, D. Information in black hole radiation. Phys. Rev. Lett.. 71 pp. 3743-3746 (1993)
[70] Mathur, S. The Information paradox: A Pedagogical introduction. Class. Quant. Grav.. 26 pp. 224001 (2009)
[71] Almheiri, A., Hartman, T., Maldacena, J., Shaghoulian, E. & Tajdini, A. The entropy of Hawking radiation. Rev. Mod. Phys.. 93, 035002 (2021)
[72] Verlinde, E. Emergent Gravity and the Dark Universe. SciPost Phys.. 2, 016 (2017)
[73] Cadoni, M., Casadio, R., Giusti, A., Mück, W. & Tuveri, M. Effective Fluid Descrip-tion of the Dark Universe. Phys. Lett. B. 776 pp. 242-248 (2018)
[74] Cadoni, M., Casadio, R., Giusti, A. & Tuveri, M. Emergence of a Dark Force in Corpuscular Gravity. Phys. Rev. D. 97, 044047 (2018)
[75] Cadoni, M. & Tuveri, M. Galactic dynamics and long-range quantum gravity. Phys. Rev. D. 100, 024029 (2019)
[76] Cadoni, M., Tuveri, M. & Sanna, A. Long-Range Quantum Gravity. Symmetry. 12, 1396 (2020)
[77] Clifton, T., Ferreira, P., Padilla, A. & Skordis, C. Modified Gravity and Cosmology. Phys. Rept.. 513 pp. 1-189 (2012)
[78] Biswas, T., Mazumdar, A. & Siegel, W. Bouncing universes in string-inspired gravity. JCAP. 3 pp. 009 (2006)
[79] Biswas, T., Gerwick, E., Koivisto, T. & Mazumdar, A. Towards singularity and ghost free theories of gravity. Phys. Rev. Lett.. 108 pp. 031101 (2012)
[80] Burzillà, N., Giacchini, B., Netto, T. & Modesto, L. Higher-order regularity in local and nonlocal quantum gravity. Eur. Phys. J. C. 81, 462 (2021)
[81] Buoninfante, L. & Mazumdar, A. Nonlocal star as a blackhole mimicker. Phys. Rev.D. 100, 024031 (2019)
[82] Boos, J. Non-singular ”Gauss” black hole from non-locality: a simple model with a de Sitter core, mass gap, and no inner horizon. (2021,4)
[83] Giacomini, F. & Brukner, Č. Einstein’s Equivalence principle for superpositions of gravitational fields. (2020,12)
[84] Giacomini, F. & Brukner, Č. Quantum superposition of spacetimes obeys Einstein’s equivalence principle. AVS Quantum Sci.. 4, 015601 (2022)
[85] Lake, M., Miller, M., Ganardi, R., Liu, Z., Liang, S. & Paterek, T. Generalised uncertainty relations from superpositions of geometries. Class. Quant. Grav.. 36, 155012 (2019)
[86] Foo, J., Onoe, S. & Zych, M. Unruh-deWitt detectors in quantum superpositions of trajectories. Phys. Rev. D. 102, 085013 (2020)
[87] Foo, J., Mann, R. & Zych, M. Schrödinger’s cat for de Sitter spacetime. Class. Quant. Grav.. 38, 115010 (2021)
[88] Foo, J., Arabaci, C., Zych, M. & Mann, R. Quantum Signatures of Black Hole Mass Superpositions. Phys. Rev. Lett.. 129, 181301 (2022)
[89] Foo, J., Arabaci, C., Zych, M. & Mann, R. Quantum superpositions of Minkowski spacetime. (2022,8)
[90] Tjoa, E. & Mann, R. Unruh-DeWitt detector in dimensionally-reduced static spher-ically symmetric spacetimes. JHEP. 3 pp. 014 (2022)
[91] Carlesso, M., Bassi, A., Paternostro, M. & Ulbricht, H. undefined. (IOP Publish-ing,2019,9), https://doi.org/10.1088/1367-2630/ab41c1
[92] Christodoulou, M. & Rovelli, C. On the possibility of laboratory evidence for quan-tum superposition of geometries. Phys. Lett. B. 792 pp. 64-68 (2019)
[93] Giacomini, F., Castro-Ruiz, E. & Brukner, Č. Quantum mechanics and the covariance of physical laws in quantum reference frames. Nature Commun.. 10, 494 (2019)
[94] Foo, J., Mann, R. & Zych, M. Schrödinger’s Black Hole Cat. (2022,4)
[95] Bose, S., Mazumdar, A., Morley, G., Ulbricht, H., Toroš, M., Paternos-tro, M., Geraci, A., Barker, P., Kim, M. & Milburn, G. Spin Entangle-ment Witness for Quantum Gravity. Phys. Rev. Lett.. 119, 240401 (2017,12), https://link.aps.org/doi/10.1103/PhysRevLett.119.240401
[96] Marletto, C. & Vedral, V. Gravitationally Induced Entanglement between Two Mas-sive Particles is Sufficient Evidence of Quantum Effects in Gravity. Phys. Rev. Lett.. 119, 240402 (2017,12), https://link.aps.org/doi/10.1103/PhysRevLett.119.240402
[97] Howl, R., Penrose, R. & Fuentes, I. Exploring the unification of quantum theory and general relativity with a Bose–Einstein condensate. New J. Phys.. 21, 043047 (2019)
[98] Howl, R., Vedral, V., Naik, D., Christodoulou, M., Rovelli, C. & Iyer, A. Non-Gaussianity as a signature of a quantum theory of gravity. PRX Quantum. 2 pp. 010325 (2021)
[99] Krisnanda, T., Tham, G., Paternostro, M. & Paterek, T. Observable quantum en-tanglement due to gravity. (2019,6)
[100] Westphal, T., Hepach, H., Pfaff, J. & Aspelmeyer, M. Measurement of gravitational coupling between millimetre-sized masses. Nature. 591, 225-228 (2021)
[101] Fein, Y., Geyer, P., Zwick, P., Kiałka, F., Pedalino, S., Mayor, M., Gerlich, S. & Arndt, M. Quantum superposition of molecules beyond 25 kDa. Nature Physics. 15, 1242-1245 (2019)
[102] Aspelmeyer, M. When Zeh Meets Feynman: How to Avoid the Appearance of a Classical World in Gravity Experiments. Fundam. Theor. Phys.. 204 pp. 85-95 (2022)
[103] Barbado, L., Castro-Ruiz, E., Apadula, L. & Brukner, Č. Unruh effect for detectors in superposition of accelerations. Phys. Rev. D. 102, 045002 (2020)
[104] Christodoulou, M., Di Biagio, A., Aspelmeyer, M., Brukner, Č., Rovelli, C. & Howl,R. Locally mediated entanglement through gravity from first principles. (2022,2)
[105] Li, Y., Zhang, B. & You, L. Entanglement and quantum teleportation under super-posed gravitational fields. New J. Phys.. 24, 093034 (2022)
[106] Penrose, R. On gravity’s role in quantum state reduction. Gen. Rel. Grav.. 28 pp.581- 600 (1996)
[107] Blencowe, M. Effective Field Theory Approach to Gravitation-ally Induced Decoherence. Phys. Rev. Lett.. 111, 021302 (2013,7), https://link.aps.org/doi/10.1103/PhysRevLett.111.021302
[108] Fuentes-Schuller, I. & Mann, R. Alice Falls into a Black Hole: En-tanglement in Noninertial Frames. Phys. Rev. Lett.. 95, 120404 (2005,9), https://link.aps.org/doi/10.1103/PhysRevLett.95.120404
[109] Martı́n-Martı́nez, E., Garay, L. & León, J. Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D. 82, 064006 (2010,9), https://link.aps.org/doi/10.1103/PhysRevD.82.064006
[110] Howl, R., Akil, A., Kristjánsson, H., Zhao, X. & Chiribella, G. Quantum gravity as a communication resource. (2022,3)
[111] Penrose, R. On the Gravitization of Quantum Mechanics 1: Quantum State Reduc-tion. Found. Phys.. 44 pp. 557-575 (2014)
[112] Hamette, A., Kabel, V., Castro-Ruiz, E. & Brukner, Č. Falling through masses in superposition: quantum reference frames for indefinite metrics. (2021,12)
[113] Morris, M. & Thorne, K. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys.. 56 pp. 395-412 (1988)
[114] Morris, M., Thorne, K. & Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett.. 61 pp. 1446-1449 (1988)
[115] Garattini, R. & Lobo, F. Self-sustained traversable wormholes in noncommutative geometry. Phys. Lett. B. 671 pp. 146-152 (2009)
[116] Simpson, A. & Visser, M. Black-bounce to traversable wormhole. JCAP. 2 pp. 042 (2019)
[117] Kundu, A. Wormholes & Holography: An Introduction. (2021,10)
[118] Hochberg, D. & Visser, M. The Null energy condition in dynamic wormholes. Phys. Rev. Lett.. 81 pp. 746-749 (1998)
[119] Visser, M. Lorentzian wormholes: From Einstein to Hawking. (1995)
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559080
专题理学院_物理系
推荐引用方式
GB/T 7714
Ali Akil. Black Holes And Quantum Effects[D]. Hong Kong. Hong Kong University of Science and Technology,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11851017-Ali Akil-物理(8955KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ali Akil]的文章
百度学术
百度学术中相似的文章
[Ali Akil]的文章
必应学术
必应学术中相似的文章
[Ali Akil]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。