中文版 | English
题名

CORRELATING THERMOELECTRIC PROPERTIES TO NANOSTRUCTURES BY ADVANCED STEM/TEM TECHNIQUES

姓名
姓名拼音
YU Yong
学号
11855018
学位类型
博士
学位专业
Material science and engineering
导师
何佳清
导师单位
物理系
外机构导师
Michel BOSMAN
论文答辩日期
2022-10
论文提交日期
2023-09-19
学位授予单位
NATIONAL UNIVERSITY OF SINGAPORE
学位授予地点
SINGAPORE
摘要

Thermoelectrics enable direct heat-to-electricity transformation, but their performance has so far been restricted by the ambiguous understanding of the nanoscale atomic structure and its effect on carrier and phonon transport. Thanks to the recent development of aberration-corrected scanning transmission electron microscopy (STEM), the atomic structure of all nanoscale defects can now be imaged. Preliminary works link these defects to lattice thermal conductivity but they are rarely linked with carrier mobility.

In this thesis, we develop an understanding of the relationship between the nanostructure

and the properties of thermoelectric materials, especially electrical mobility, through the utilization of the versatile techniques of STEM and transmission electron microscopy (TEM). In Chapter 2, two kinds of nano-precipitates have been carefully identified to understand their effect on lattice thermal conductivity. In Chapter 3, the atomic-scale mixing of different chemical elements and the resultant subtle local strain is characterized and discussed in how they contribute to low lattice thermal conductivity. In Chapter 4, the formation mechanism of two-dimensional vdW gaps is studied. These two-dimensional vdW gaps are beneficial for thermoelectric performance. In Chapter 5, a big jump is made by linking defects and carrier scattering in the framework of quantum mechanics.

Overall, this thesis provides insights on how to better achieve and understand highperformance thermoelectric materials through a detailed microstructure investigation. The conclusion about the effect of defects and interfaces in carrier scattering can be extensively applied far beyond thermoelectric materials.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2022-12
参考文献列表

1.     C. Gayner, K. K. Kar, Recent advances in thermoelectric materials. Prog. Mater. Sci. 83, 330–382 (2016).

2.     Y. Pei, H. Wang, G. J. Snyder, Band Engineering of Thermoelectric Materials. Adv. Mater. 24, 6125–6135 (2012).

3.     H. Li, X. Tang, Q. Zhang, C. Uher, High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).

4.     T. C. Harman, M. P. Walsh, B. E. laforge, G. W. Turner, Nanostructured thermoelectric materials. J. Electron. Mater. 34, L19–L22 (2005).

5.     G. Chen, M. S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003).

6.     Y. Xiao, L.-D. Zhao, Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater. 3, 55 (2018).

7.     G. Tan, L.-D. Zhao, M. G. Kanatzidis, Rationally Designing High-Performance Bulk Thermoelectric Materials. Chem. Rev. 116, 12123–12149 (2016).

8.     M. Cutler, J. F. Leavy, R. L. Fitzpatrick, Electronic transport in semimetallic cerium sulfide. Phys. Rev. 133, A1143 (1964).

9.     G. J. Snyder, E. S. Toberer, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 101–110.

10.   E. S. Toberer, A. F. May, G. J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials. Chem. Mater. 22, 624–634 (2009).

11.   R. Franz, G. Wiedemann, Ueber die Wärme‐Leitungsfähigkeit der Metalle. Ann. Phys. 165, 497–531 (1853).

12.   Y. Xiao, L.-D. Zhao, Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Mater. 3, 55 (2018).

13.   I. Kudman, Thermoelectric properties of dilute PbTe-GeTe alloys. Metall. Trans. 2, 163–168 (1971).

14.   A. Guéguen, P. F. P. Poudeu, C.-P. Li, S. Moses, C. Uher, J. He, V. Dravid, K. M. Paraskevopoulos, M. G. Kanatzidis, Thermoelectric Properties and Nanostructuring in the p-Type Materials NaPb18xSnxMTe20 (M= Sb, Bi). Chem. Mater. 21, 1683–1694 (2009).

15.   J. Androulakis, K. F. Hsu, R. Pcionek, H. Kong, C. Uher, J. J. D’Angelo, A. Downey, T. Hogan, M. G. Kanatzidis, Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag (Pb1–ySny)mSbTe2+m. Adv. Mater. 18, 1170–1173 (2006).

16.   Y. Zhang, L. Wu, J. Zhang, J. Xing, J. Luo, Eutectic microstructures and thermoelectric properties of MnTe-rich precipitates hardened PbTe. Acta Mater. 111, 202–209 (2016).

17.   Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen,

Z.    Ren, Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe1–ySey. J. Am. Chem. Soc. 134, 10031–10038 (2012).

18.   K. Biswas, J. He, G. Wang, S.-H. Lo, C. Uher, V. P. Dravid, M. G. Kanatzidis, High thermoelectric figure of merit in nanostructured p-type PbTe–MTe (M= Ca, Ba). Energy Environ. Sci. 4, 4675–4684 (2011).

19.   Y. Pei, A. D. LaLonde, N. A. Heinz, G. J. Snyder, High thermoelectric figure of merit in PbTe alloys demonstrated in PbTe–CdTe. Adv. Energy Mater. 2, 670–675 (2012).

20.   H. J. Wu, L.-D. Zhao, F. S. Zheng, D. Wu, Y. L. Pei, X. Tong, M. G. Kanatzidis, J.

Q.    He, Broad temperature plateau for thermoelectric figure of merit ZT> 2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5, 4515 (2014).

21.   H. Wang, J. Hwang, M. L. Snedaker, I. Kim, C. Kang, J. Kim, G. D. Stucky, J. Bowers, W. Kim, High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem. Mater. 27, 944–949 (2015).

22.   H. Wang, J.-H. Bahk, C. Kang, J. Hwang, K. Kim, J. Kim, P. Burke, J. E. Bowers,

A.    C. Gossard, A. Shakouri, Right sizes of nano-and microstructures for high-performance and rigid bulk thermoelectrics. Proc. Natl. Acad. Sci. 111, 10949–10954 (2014).

23.   Y. Gelbstein, J. Davidow, Highly efficient functional GexPb1xTe based thermoelectric alloys. Phys. Chem. Chem. Phys. 16, 20120–20126 (2014).

24.   R. J. Korkosz, T. C. Chasapis, S. Lo, J. W. Doak, Y. J. Kim, C.-I. Wu, E. Hatzikraniotis, T. P. Hogan, D. N. Seidman, C. Wolverton, High ZT in p-Type (PbTe)1–2x(PbSe)x(PbS)x Thermoelectric Materials. J. Am. Chem. Soc. 136, 3225–3237 (2014).

25.   K. Ahn, K. Biswas, J. He, I. Chung, V. Dravid, M. G. Kanatzidis, Enhanced thermoelectric properties of p-type nanostructured PbTe–MTe (M= Cd, Hg) materials. Energy Environ. Sci. 6, 1529–1537 (2013).

26.   J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States. Science. 321, 554–557 (2008).

27.   D. Ginting, C.-C. Lin, L. Rathnam, G. Kim, J. H. Yun, H. S. So, H. Lee, B.-K. Yu, S.-J. Kim, K. Ahn, Enhancement of Thermoelectric Performance in Na-Doped Pb0. 6Sn0. 4Te0. 95–xSexS0. 05 via Breaking the Inversion Symmetry, Band Convergence, and Nanostructuring by Multiple Elements Doping. ACS Appl. Mater. Interfaces. 10, 11613–11622 (2018).

28.   Z. Jian, Z. Chen, W. Li, J. Yang, W. Zhang, Y. Pei, Significant band engineering effect of YbTe for high performance thermoelectric PbTe. J. Mater. Chem. C. 3, 12410–12417 (2015).

29.   Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 473, 66 (2011).

30.   Y.-J. Kim, L.-D. Zhao, M. G. Kanatzidis, D. N. Seidman, Analysis of Nanoprecipitates in a Na-Doped PbTe–SrTe Thermoelectric Material with a High Figure of Merit. ACS Appl. Mater. Interfaces. 9, 21791–21797 (2017).

31.   L. D. Zhao, H. J. Wu, S. Q. Hao, C.-I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013).

32.   Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge, R. Hanus, J. Yang, Y. Chen, M. Huang, G. J. Snyder, Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater. 29, 1606768 (2017).

33.   K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid,

M.   G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 489, 414–418 (2012).

34.   D. Wu, L.-D. Zhao, X. Tong, W. Li, L. Wu, Q. Tan, Y. Pei, L. Huang, J.-F. Li, Y. Zhu, Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy Environ. Sci. 8, 2056–2068 (2015).

35.   G. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat. Commun. 7, 12167 (2016).

36.   E. K. Chere, Q. Zhang, K. McEnaney, M. Yao, F. Cao, J. Sun, S. Chen, C. Opeil,

G.    Chen, Z. Ren, Enhancement of thermoelectric performance in n-type PbTe 1 y Se y by doping Cr and tuning Te: Se ratio. Nano energy. 13, 355–367 (2015).

37.   S. N. Girard, T. C. Chasapis, J. He, X. Zhou, E. Hatzikraniotis, C. Uher, K. M. Paraskevopoulos, V. P. Dravid, M. G. Kanatzidis, PbTe–PbSnS2 thermoelectric composites: low lattice thermal conductivity from large microstructures. Energy Environ. Sci. 5, 8716–8725 (2012).

38.   I. Cohen, M. Kaller, G. Komisarchik, D. Fuks, Y. Gelbstein, Enhancement of the thermoelectric properties of n-type PbTe by Na and Cl co-doping. J. Mater. Chem.

C.    3, 9559–9564 (2015).

39.   P. K. Rawat, B. Paul, P. Banerji, Exploration of Zn resonance levels and thermoelectric properties in I-doped PbTe with ZnTe nanostructures. ACS Appl. Mater. Interfaces. 6, 3995–4004 (2014).

40.   K. Ahn, M.-K. Han, J. He, J. Androulakis, S. Ballikaya, C. Uher, V. P. Dravid, M.

G.    Kanatzidis, Exploring resonance levels and nanostructuring in the PbTe CdTe system and enhancement of the thermoelectric figure of merit. J. Am. Chem. Soc. 132, 5227–5235 (2010).

41.   Y. Xiao, W. Li, C. Chang, Y. Chen, L. Huang, J. He, L.-D. Zhao, Synergistically optimizing thermoelectric transport properties of n-type PbTe via Se and Sn co-alloying. J. Alloys Compd. 724, 208–221 (2017).

42.   P. Jood, M. Ohta, M. Kunii, X. Hu, H. Nishiate, A. Yamamoto, M. G. Kanatzidis, Enhanced average thermoelectric figure of merit of n-type PbTe1xIx–MgTe. J. Mater. Chem. C. 3, 10401–10408 (2015).

43.   D. Ginting, C.-C. Lin, L. Rathnam, J. H. Yun, B.-K. Yu, S.-J. Kim, J.-S. Rhyee, High thermoelectric performance due to nano-inclusions and randomly distributed interface potentials in N-type (PbTe0.93xSe0.07Clx)0.93(PbS)0.07 composites. J. Mater. Chem. A. 5, 13535–13543 (2017).

44.   G. Ding, J. Si, S. Yang, G. Wang, H. Wu, High thermoelectric properties of n-type Cd-doped PbTe prepared by melt spinning. Scr. Mater. 122, 1–4 (2016).

45.   Y. Pei, Z. M. Gibbs, A. Gloskovskii, B. Balke, W. G. Zeier, G. J. Snyder, Optimum carrier concentration in n‐type PbTe thermoelectrics. Adv. energy Mater. 4, 1400486 (2014).

46.   Q. Zhang, Q. Song, X. Wang, J. Sun, Q. Zhu, K. Dahal, X. Lin, F. Cao, J. Zhou, S. Chen, Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance. Energy Environ. Sci. 11, 933–940 (2018).

47.   G. Tan, C. C. Stoumpos, S. Wang, T. P. Bailey, L. Zhao, C. Uher, M. G. Kanatzidis, Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of N‐Type PbTe to High Performance. Adv. Energy Mater. 7, 1700099 (2017).

48.   Y. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S. J. Pennycook,

L.     Huang, Remarkable roles of Cu to synergistically optimize phonon and carrier transport in n-type PbTe-Cu2Te. J. Am. Chem. Soc. 139, 18732–18738 (2017).

49.   L. Fu, M. Yin, D. Wu, W. Li, D. Feng, L. Huang, J. He, Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects. Energy Environ. Sci. 10, 2030–2040 (2017).

50.   J. Zhang, D. Wu, D. He, D. Feng, M. Yin, X. Qin, J. He, Extraordinary Thermoelectric Performance Realized in n‐Type PbTe through Multiphase Nanostructure Engineering. Adv. Mater. 29, 1703148 (2017).

51.   Z. Dashevsky, S. Shusterman, M. P. Dariel, I. Drabkin, Thermoelectric efficiency in graded indium-doped PbTe crystals. J. Appl. Phys. 92, 1425–1430 (2002).

52.   V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin, D. M. Rowe, High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation. J. Mater. Sci. 37, 2893–2897 (2002).

53.   Y. Pei, A. F. May, G. J. Snyder, Self‐Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance. Adv. Energy Mater. 1, 291–296 (2011).

54.   S. A. Yamini, T. Ikeda, A. Lalonde, Y. Pei, S. X. Dou, G. J. Snyder, Rational design of p-type thermoelectric PbTe: temperature dependent sodium solubility. J. Mater. Chem. A. 1, 8725–8730 (2013).

55.   K. Bergum, T. Ikeda, G. J. Snyder, Solubility and microstructure in the pseudo-binary PbTe–Ag2Te system. J. Solid State Chem. 184, 2543–2552 (2011).

56.   R. F. Brebrick, R. S. Allgaier, Composition limits of stability of PbTe. J. Chem. Phys. 32, 1826–1831 (1960).

57.   Y. Gelbstein, Z. Dashevsky, M. P. Dariel, High performance n-type PbTe-based materials for thermoelectric applications. Phys. B Condens. Matter. 363, 196–205 (2005).

58.   S. A. Yamini, D. R. G. Mitchell, Z. M. Gibbs, R. Santos, V. Patterson, S. Li, Y. Z. Pei, S. X. Dou, G. Jeffrey Snyder, Heterogeneous Distribution of Sodium for High Thermoelectric Performance of p‐type Multiphase Lead‐Chalcogenides. Adv. Energy Mater. 5, 1501047 (2015).

59.   Y. Pei, A. D. LaLonde, N. A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, G. J. Snyder, Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv. Mater. 23, 5674–5678 (2011).

60.   I. Yu, B. A. E. Ravich, I. A. Smirnov, Semiconducting lead chalcogenides (1970).

61.   Y. Xiao, H. Wu, J. Cui, D. Wang, L. Fu, Y. Zhang, Y. Chen, J. He, S. J. Pennycook,

L.     D. Zhao, Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci. 11, 2486–2495 (2018).

62.   S. N. Girard, J. He, X. Zhou, D. Shoemaker, C. M. Jaworski, C. Uher, V. P. Dravid, J. P. Heremans, M. G. Kanatzidis, High performance Na-doped PbTe–PbS thermoelectric materials: electronic density of states modification and shape-controlled nanostructures. J. Am. Chem. Soc. 133, 16588–16597 (2011).

63.   H. J. Wu, L. D. Zhao, F. S. Zheng, D. Wu, Y. L. Pei, X. Tong, M. G. Kanatzidis, J.

Q.    He, Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat. Commun. 5 (2014).

64.   J. P. Heremans, B. Wiendlocha, A. M. Chamoire, Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 5, 5510–5530 (2012).

65.   W. J. Parker, R. J. Jenkins, C. P. Butler, G. L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32, 1679–1684 (1961).

66.   J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015).

67.   C.-H. M. Chuang, P. R. Brown, V. Bulović, M. G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13, 796 (2014).

68.   K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, M. G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3, 160–166 (2011).

69.   C. M. Bhandari, D. M. Rowe, CRC Handbook of thermoelectrics. CRC Press. Boca Raton, FL, 49 (1995).

70.   E. O. Kane, Band structure of indium antimonide. J. Phys. Chem. Solids. 1, 249–261 (1957).

71.   Y. Pei, A. D. LaLonde, H. Wang, G. J. Snyder, Low effective mass leading to high thermoelectric performance. Energy Environ. Sci. 5, 7963–7969 (2012).

72.   B. A. Volkov, L. I. Ryabova, D. R. Khokhlov, Mixed-valence impurities in lead telluride-based solid solutions. Physics-Uspekhi. 45, 819–846 (2002).

73.   V. I. Kaĭdanov, Y. I. Ravich, Deep and resonance states in AIV BVI semiconductors. Physics-Uspekhi. 28, 31–53 (1985).

74.   X. Su, S. Hao, T. P. Bailey, S. Wang, I. Hadar, G. Tan, T. Song, Q. Zhang, C. Uher,

C.    Wolverton, Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb1xGaxTe. Adv. Energy Mater., 1800659 (2018).

75.   M. D. Nielsen, E. M. Levin, C. M. Jaworski, K. Schmidt-Rohr, J. P. Heremans, Chromium as resonant donor impurity in PbTe. Phys. Rev. B. 85, 45210 (2012).

76.   E. P. Skipetrov, O. V Kruleveckaya, L. A. Skipetrova, E. I. Slynko, V. E. Slynko, Fermi level pinning in Fe-doped PbTe under pressure. Appl. Phys. Lett. 105, 22101 (2014).

77.   B. Wiendlocha, Localization and magnetism of the resonant impurity states in Ti doped PbTe. Appl. Phys. Lett. 105, 133901 (2014).

78.   E. P. Skipetrov, L. A. Skipetrova, A. V Knotko, E. I. Slynko, V. E. Slynko, Scandium resonant impurity level in PbTe. J. Appl. Phys. 115, 133702 (2014).

79.   K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science. 303, 818–821 (2004).

80.   J. Callaway, H. C. von Baeyer, Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 120, 1149 (1960).

81.   S. J. Pennycook, P. D. Nellist, Scanning transmission electron microscopy: imaging and analysis (Springer Science & Business Media, 2011).

82.   Z. Tian, K. Esfarjani, G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method. Phys. Rev. B. 86, 235304 (2012).

83.   B. Qiu, H. Bao, X. Ruan, G. Zhang, Y. Wu, in ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels (American Society of Mechanical Engineers, 2012), pp. 659–670.

84.   K. Esfarjani, G. Chen, H. T. Stokes, Heat transport in silicon from first-principles calculations. Phys. Rev. B. 84, 85204 (2011).

85.   J. He, M. G. Kanatzidis, V. P. Dravid, High performance bulk thermoelectrics via a panoscopic approach. Mater. Today. 16, 166–176 (2013).

86.   J. He, S. N. Girard, J. C. Zheng, L. Zhao, M. G. Kanatzidis, V. P. Dravid, Strong phonon scattering by layer structured PbSnS2in PbTe based thermoelectric materials. Adv. Mater. 24, 4440–4444 (2012).

87.   Y. Xiao, H. Wu, J. Cui, D. Wang, L. Fu, Y. Zhang, Y. Chen, J. He, S. J. Pennycook,

L.     D. Zhao, Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci. 11, 2486–2495 (2018).

88.   L. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ. Sci. 6, 3346–3355 (2013).

89.   S. H. Lo, J. He, K. Biswas, M. G. Kanatzidis, V. P. Dravid, Phonon scattering and thermal conductivity in p-type nanostructured PbTe-BaTe bulk thermoelectric materials. Adv. Funct. Mater. 22, 5175–5184 (2012).

90.   D. L. Partin, C. M. Thrush, B. M. Clemens, Lead strontium telluride and lead barium telluride grown by molecular‐beam epitaxy. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 5, 686–689 (1987).

91.   M. J. Htÿch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy. 74, 131–146 (1998).

92.   J. He, I. D. Blum, H.-Q. Wang, S. N. Girard, J. Doak, L.-D. Zhao, J.-C. Zheng, G. Casillas, C. Wolverton, M. Jose-Yacaman, Morphology control of nanostructures: Na-doped PbTe–PbS system. Nano Lett. 12, 5979–5984 (2012).

93.   H. J. Goldsmid, A. W. Penn, Boundary scattering of phonons in solid solutions. Phys. Lett. A. 27, 523–524 (1968).

94.   G. Yang, Q. Ramasse, R. F. Klie, Direct measurement of charge transfer in thermoelectric Ca3 Co4 O9. Phys. Rev. B - Condens. Matter Mater. Phys. 78 (2008).

95.   H. Wu, F. Zheng, D. Wu, Z.-H. Ge, X. Liu, J. He, Advanced electron microscopy for thermoelectric materials. Nano Energy. 13, 626–650 (2015).

96.   J. He, J. Androulakis, M. G. Kanatzidis, V. P. Dravid, Seeing is believing: Weak phonon scattering from nanostructures in alkali metal-doped lead telluride. Nano Lett. 12, 343–347 (2012).

97.   S. Il Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 348, 109–114 (2015).

98.   P. G. Klemens, The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. Sect. A. 68, 1113 (1955).

99.   J. He, S. N. Girard, M. G. Kanatzidis, V. P. Dravid, Microstructure‐lattice thermal conductivity correlation in nanostructured PbTe0. 7S0. 3 thermoelectric Materials. Adv. Funct. Mater. 20, 764–772 (2010).

100. J. M. Ziman, Electrons and phonons: the theory of transport phenomena in solids (Oxford university press, 2001).

101. P. G. Klemens, Thermal Conductivity, vol. 1 (Academic Press, London, 1969).

102. P. G. Klemens, Solid State Physics - Advances in Research and Applications (Elsevier, 1958), vol. 7, pp. 1–98.

103. S. Il Kim, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin,

X.    S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. 348, 109–115 (2015).

104. K. Zhang, Q. Zhang, L. Wang, W. Jiang, L. Chen, Enhanced thermoelectric performance of Se-doped PbTe bulk materials via nanostructuring and multi-scale hierarchical architecture. J. Alloys Compd. 725, 563–572 (2017).

105. E. S. Toberer, A. Zevalkink, G. J. Snyder, Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843–15852 (2011).

106. J. D. Chung, A. J. H. McGaughey, M. Kaviany, Role of phonon dispersion in lattice thermal conductivity modeling. J. Heat Transfer. 126, 376–380 (2004).

107. Y. Xiao, H. Wu, J. Cui, D. Wang, L. Fu, Y. Zhang, Y. Chen, J. He, S. J. Pennycook, L.-D. Zhao, Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci. 11, 2486–2495 (2018).

108. Y. Xiao, H. Wu, J. Cui, D. Wang, L. Fu, Y. Zhang, Y. Chen, J. He, S. J. Pennycook,

L.     D. Zhao, Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy Environ. Sci. 11, 2486–2495 (2018).

109. Y. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S. J. Pennycook,

L.     Huang, J. He, L. D. Zhao, Remarkable Roles of Cu to Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te. J. Am. Chem. Soc. 139, 18732–18738 (2017).

110. A. J. D’Alfonso, B. Freitag, D. Klenov, L. J. Allen, Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy. Phys. Rev. B. 81, 100101 (2010).

111. P. Longo, P. Thomas, A. Aitouchen, B. Schaffer, R. D. Twesten, Simultaneous EELS/EDS Composition Mapping at Atomic Resolution Using Fast STEM Spectrum-Imaging. Micros. Today. 21, 36–40 (2013).

112. G. K. H. Madsen, D. J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006).

113. W. Li, J. Carrete, N. A. Katcho, N. Mingo, ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

114. S. Toyama, T. Seki, S. Anada, H. Sasaki, K. Yamamoto, Y. Ikuhara, N. Shibata, Quantitative electric field mapping of a p–n junction by DPC STEM. Ultramicroscopy. 216, 113033 (2020).

115. B. Haas, J. L. Rouvière, V. Boureau, R. Berthier, D. Cooper, Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy. Ultramicroscopy. 198, 58–72 (2019).

116. E. Vlkl, L. F. Allard, D. C. Joy, Introduction to Electron Holography (Introduction to Electron Holography, 1999).

117. X. Xu, Y. Liu, J. Wang, D. Isheim, V. P. Dravid, C. Phatak, S. M. Haile, Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography. Nat. Mater. 19, 887–893 (2020).

118. C. Zhou, Y. Yu, Y. L. Lee, B. Ge, W. Lu, O. Cojocaru-Mirédin, J. Im, S. P. Cho,

M.   Wuttig, Z. Shi, I. Chung, Exceptionally high average power factor and thermoelectric figure of merit in n-type PbSe by the dual incorporation of Cu and Te. J. Am. Chem. Soc. 142, 15172–15186 (2020).

119. B. Jiang, Y. Yu, J. Cui, X. Liu, L. Xie, J. Liao, Q. Zhang, Y. Huang, S. Ning, B. Jia,

B.    Zhu, S. Bai, L. Chen, S. J. Pennycook, J. He, High-entropy-stabilized chalcogenides with high thermoelectric performance. Science. 371, 830–834 (2021).

120. L. Jones, Scan-noise and Drift Correction in the STEM. Micros. Today. 22, 40–41 (2014).

121. M. J. Williamson, P. van Dooren, J. Flanagan, in 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IEEE, 2015), pp. 197–200.

122. L. Jones, S. Wenner, M. Nord, P. Harald, O. Martin, R. Holmestad, P. D. Nellist, Ultramicroscopy Optimising multi-frame ADF-STEM for high-precision atomic-resolution strain mapping. 179, 57–62 (2017).

123. A. You, M. A. Y. Be, I. In, Improved precision in strain measurement using nanobeam electron diffraction. 123114 (2015).

124. Q. Zhang, J. Liao, Y. Tang, M. Gu, C. Ming, P. Qiu, S. Bai, X. Shi, C. Uher, L. Chen, Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 10, 956–963 (2017).

125. H. Wang, Y. Pei, A. D. LaLonde, G. J. Snyder, Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc. Natl. Acad. Sci. 109, 9705–9709 (2012).

126. L. Cui, X. Du, G. Wei, Y. Feng, Thermal Conductivity of Graphene Wrinkles: A Molecular Dynamics Simulation. J. Phys. Chem. C. 120, 23807–23812 (2016).

127. J. J. Hren, J. I. Goldstein, D. C. Joy, Introduction to analytical electron microscopy (Plenum Press, 1979).

128. S. Chong, G. Thiele, J. Kim, Excavating hidden adsorption sites in metal-organic frameworks using rational defect engineering. Nat. Commun. 8, 1–10 (2017).

129. J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu, D.-Y. Choi, B. Luther-Davies, Y. Lu, Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 1–8 (2016).

130. T. Lühmann, R. John, R. Wunderlich, J. Meijer, S. Pezzagna, Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond. Nat. Commun. 10, 1–9 (2019).

131. K. Balasubramanian, T. Biswas, P. Ghosh, S. Suran, A. Mishra, R. Mishra, R. Sachan, M. Jain, M. Varma, R. Pratap, Reversible defect engineering in graphene grain boundaries. Nat. Commun. 10, 1–9 (2019).

132. P. Nukala, C.-C. Lin, R. Composto, R. Agarwal, Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices. Nat. Commun. 7, 1–8 (2016).

133. R. Ramesh, Defect engineering using crystal symmetry. Proc. Natl. Acad. Sci. 115, 9344–9346 (2018).

134. J. S. Park, S. Kim, Z. Xie, A. Walsh, Point defect engineering in thin-film solar cells. Nat. Rev. Mater. 3, 194–210 (2018).

135. Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature. 567, 323–333 (2019).

136. J. J. Wang, J. Wang, Y. Xu, T. Xin, Z. Song, M. Pohlmann, M. Kaminski, L. Lu,

H.    Du, C. L. Jia, R. Mazzarello, M. Wuttig, W. Zhang, Layer-Switching Mechanisms in Sb2Te3. Phys. Status Solidi - Rapid Res. Lett. 13, 1–7 (2019).

137. Y. Meng, D. Li, C. Zhang, Y. Wang, R. E. Simpson, Y. Long, A four-state programmable mid-infrared band-stop filter exploiting a Ge2Sb2Te5 film and VO 2 nanoparticles. Appl. Phys. Lett. 119, 141109 (2021).

138. Y. Yu, H. Wu, J. He, Synergistic Strategies to Boost Lead Telluride as Prospective Thermoelectrics. Thin Film Flex. Thermoelectr. Gener. Devices Sensors, 155–189 (2023).

139. W. Callister, Fundamentals of Materials Science and Engineering (Valley Cottage, NY : Scitus Academics LLC, 2016, 2007).

140. D. Wu, L. Xie, X. Xu, J. He, High Thermoelectric Performance Achieved in GeTe–Bi 2 Te 3 Pseudo‐Binary via Van der Waals Gap‐Induced Hierarchical Ferroelectric Domain Structure. Adv. Funct. Mater. 29, 1806613 (2019).

141. X. Xu, L. Xie, Q. Lou, D. Wu, J. He, Boosting the Thermoelectric Performance of Pseudo-Layered Sb2Te3 (GeTe) n via Vacancy Engineering. Adv. Sci. 5, 1801514 (2018).

142. D. Wu, L. Xie, X. Chao, Z. Yang, J. He,  Step-Up Thermoelectric Performance Realized in Bi2Te3 Alloyed GeTe via Carrier Concentration and Microstructure Modulations . ACS Appl. Energy Mater. (2019).

143. Q. Lou, X. Xu, Y. Huang, B. Zhu, Y. Yu, J. He, Excellent Thermoelectric Performance Realized in p-Type Pseudolayered Sb2Te3(GeTe)12 via Rhenium Doping. ACS Appl. Energy Mater. 3, 2063–2069 (2019).

144. J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I. T. Witting, A. Faghaninia, Y. Chen, A. Jain, L. Chen, G. J. Snyder, Y. Pei, Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule. 2, 976–987 (2018).

145. M. N. Schneider, P. Urban, A. Leineweber, M. Döblinger, O. Oeckler, Influence of stress and strain on the kinetic stability and phase transitions of cubicand pseudocubic Ge-Sb-Te materials. Phys. Rev. B - Condens. Matter Mater. Phys. 81, 1–9 (2010).

146. A. S. Frolov, J. Sánchez-Barriga, C. Callaert, J. Hadermann, A. V. Fedorov, D. Y. Usachov, A. N. Chaika, B. C. Walls, K. Zhussupbekov, I. V. Shvets, M. Muntwiler,

M.   Amati, L. Gregoratti, A. Y. Varykhalov, O. Rader, L. V. Yashina, Atomic and Electronic Structure of a Multidomain GeTe Crystal. ACS Nano. 14, 16576–16589 (2020).

147. C. Ophus, Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanal., 1–20 (2019).

148. J. Momand, R. Wang, J. E. Boschker, M. A. Verheijen, R. Calarco, B. J. Kooi, Dynamic reconfiguration of van der Waals gaps within GeTe-Sb2Te3 based superlattices. Nanoscale. 9, 8774–8780 (2017).

149. A. Lotnyk, T. Dankwort, I. Hilmi, L. Kienle, B. Rauschenbach, In situ observations of the reversible vacancy ordering process in van der Waals-bonded Ge-Sb-Te thin films and GeTe-Sb2Te3 superlattices. Nanoscale. 11, 10838–10845 (2019).

150. J. Momand, F. R. L. Lange, R. Wang, J. E. Boschker, M. A. Verheijen, R. Calarco,

M.   Wuttig, B. J. Kooi, Atomic stacking and van-der-Waals bonding in GeTe-Sb2Te3 superlattices. J. Mater. Res. 31, 3115–3124 (2016).

151. D. Hull, H. M. Otte, Introduction to Dislocations. Phys. Today. 19, 91–92 (1966).

152. J. Weertman, J. R. Weertman, Elementary dislocation theory (1966).

153. R. Shaltaf, E. Durgun, J. Y. Raty, P. Ghosez, X. Gonze, Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density functional theory. Phys. Rev. B - Condens. Matter Mater. Phys. 78, 1–7 (2008).

154. J. Lothe, J. P. Hirth, Dislocation climb forces. J. Appl. Phys. 38, 845–848 (1967).

155. X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, Y. Pei, GeTe Thermoelectrics. Joule. 4, 986–1003 (2020).

156. M. Sist, H. Kasai, E. M. J. Hedegaard, B. B. Iversen, Role of vacancies in the high-temperature pseudodisplacive phase transition in GeTe. Phys. Rev. B. 97, 1–4 (2018).

157. R. B. Sills, W. Cai, Free energy change of a dislocation due to a Cottrell atmosphere. Philos. Mag. 98, 1491–1510 (2018).

158. J. P. Hirth, J. Lothe, T. Mura, Theory of dislocations (1983).

159. R. W. Balluffi, S. Allen, W. C. Carter, Kinetics of materials (John Wiley & Sons, 2005).

160. J. Gazquez, S. Bose, M. Sharma, M. A. Torija, S. J. Pennycook, C. Leighton, M. Varela, Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3-δ thin films. APL Mater. 1, 0–7 (2013).

161. D. R. Ou, T. Mori, F. Ye, T. Kobayashi, J. Zou, G. Auchterlonie, J. Drennan, Oxygen vacancy ordering in heavily rare-earth-doped ceria. Appl. Phys. Lett. 89 (2006).

162. S. Hull, S. T. Norberg, I. Ahmed, S. G. Eriksson, D. Marrocchelli, P. A. Madden, Oxygen vacancy ordering within anion-deficient Ceria. J. Solid State Chem. 182, 2815–2821 (2009).

163. U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande, N. A. Spaldin, Strain-controlled oxygen vacancy formation and ordering in CaMnO 3. Phys. Rev. B - Condens. Matter Mater. Phys. 88, 1–7 (2013).

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559081
专题理学院_物理系
推荐引用方式
GB/T 7714
Yu Y. CORRELATING THERMOELECTRIC PROPERTIES TO NANOSTRUCTURES BY ADVANCED STEM/TEM TECHNIQUES[D]. SINGAPORE. NATIONAL UNIVERSITY OF SINGAPORE,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11855018-于勇-物理系.pdf(9435KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[于勇]的文章
百度学术
百度学术中相似的文章
[于勇]的文章
必应学术
必应学术中相似的文章
[于勇]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。