中文版 | English
题名

Multi-Scale Retina Vessel Segmentation in OCTA with a Vascular Connectivity Module in the Convolutional Neural Network

作者
DOI
发表日期
2023
ISSN
1945-7928
ISBN
978-1-6654-7359-0
会议录名称
卷号
2023-April
页码
1-5
会议日期
18-21 April 2023
会议地点
Cartagena, Colombia
摘要
The segmentation of retinal blood vessels in optical coherence tomography angiography (OCTA) is of great importance for the diagnosis and treatment of various diseases such as diabetic retinopathy and dementia. Currently, UNet is one of the classical and popular networks in the segmentation field. Although significant progress has been achieved with the rapid development of UNet-based neural networks, some critical issues in retinal vessel segmentation remain unsolved. First, blood vessels in OCTA show large variations in length and width, imposing challenges in identifying the small vessels at the ends. Second, the vessels should be continuous and smooth, and the capillaries should not detach from the main vessels. Nevertheless, the current UNet-based neural networks lack the capability to preserve the shape of prior information. This study introduces a modified UNet framework for retinal vessel segmentation using OCTA images. First, multi-scale learning modules are employed to improve the ability of the network to extract multi-scale vessel objects. Then, we introduce a novel vascular connectivity module in the network to incorporate prior shape information. The proposed method id extensively evaluated on a public dataset named OCTA500, with significantly improved performance compared with the state-of-the-art methods.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
WOS记录号
WOS:001062050500365
EI入藏号
20233914806136
EI主题词
Blood ; Blood vessels ; Convolutional neural networks ; Eye protection ; Image segmentation ; Microcirculation ; Ophthalmology ; Optical tomography
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Medicine and Pharmacology:461.6 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746 ; Accidents and Accident Prevention:914.1
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10230688
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559156
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Neurology, The First Affiliated Hospital, Clinical Neuroscience Institute of Jinan University, Guangzhou, China
第一作者单位斯发基斯可信自主系统研究院;  计算机科学与工程系
第一作者的第一单位斯发基斯可信自主系统研究院;  计算机科学与工程系
推荐引用方式
GB/T 7714
Junjie Lin,Xingyue Wang,Jiansheng Fang,et al. Multi-Scale Retina Vessel Segmentation in OCTA with a Vascular Connectivity Module in the Convolutional Neural Network[C],2023:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Junjie Lin]的文章
[Xingyue Wang]的文章
[Jiansheng Fang]的文章
百度学术
百度学术中相似的文章
[Junjie Lin]的文章
[Xingyue Wang]的文章
[Jiansheng Fang]的文章
必应学术
必应学术中相似的文章
[Junjie Lin]的文章
[Xingyue Wang]的文章
[Jiansheng Fang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。