题名 | Multi-Scale Retina Vessel Segmentation in OCTA with a Vascular Connectivity Module in the Convolutional Neural Network |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 1945-7928
|
ISBN | 978-1-6654-7359-0
|
会议录名称 | |
卷号 | 2023-April
|
页码 | 1-5
|
会议日期 | 18-21 April 2023
|
会议地点 | Cartagena, Colombia
|
摘要 | The segmentation of retinal blood vessels in optical coherence tomography angiography (OCTA) is of great importance for the diagnosis and treatment of various diseases such as diabetic retinopathy and dementia. Currently, UNet is one of the classical and popular networks in the segmentation field. Although significant progress has been achieved with the rapid development of UNet-based neural networks, some critical issues in retinal vessel segmentation remain unsolved. First, blood vessels in OCTA show large variations in length and width, imposing challenges in identifying the small vessels at the ends. Second, the vessels should be continuous and smooth, and the capillaries should not detach from the main vessels. Nevertheless, the current UNet-based neural networks lack the capability to preserve the shape of prior information. This study introduces a modified UNet framework for retinal vessel segmentation using OCTA images. First, multi-scale learning modules are employed to improve the ability of the network to extract multi-scale vessel objects. Then, we introduce a novel vascular connectivity module in the network to incorporate prior shape information. The proposed method id extensively evaluated on a public dataset named OCTA500, with significantly improved performance compared with the state-of-the-art methods. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
WOS记录号 | WOS:001062050500365
|
EI入藏号 | 20233914806136
|
EI主题词 | Blood
; Blood vessels
; Convolutional neural networks
; Eye protection
; Image segmentation
; Microcirculation
; Ophthalmology
; Optical tomography
|
EI分类号 | Biomedical Engineering:461.1
; Biological Materials and Tissue Engineering:461.2
; Medicine and Pharmacology:461.6
; Optical Devices and Systems:741.3
; Imaging Techniques:746
; Accidents and Accident Prevention:914.1
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10230688 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559156 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 2.Department of Neurology, The First Affiliated Hospital, Clinical Neuroscience Institute of Jinan University, Guangzhou, China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Junjie Lin,Xingyue Wang,Jiansheng Fang,et al. Multi-Scale Retina Vessel Segmentation in OCTA with a Vascular Connectivity Module in the Convolutional Neural Network[C],2023:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论