中文版 | English
题名

OpenGait: Revisiting Gait Recognition Toward Better Practicality

作者
DOI
发表日期
2023
ISSN
1063-6919
ISBN
979-8-3503-0130-4
会议录名称
卷号
2023-June
页码
9707-9716
会议日期
17-24 June 2023
会议地点
Vancouver, BC, Canada
摘要
Gait recognition is one of the most critical long-distance identification technologies and increasingly gains popularity in both research and industry communities. Despite the significant progress made in indoor datasets, much evidence shows that gait recognition techniques perform poorly in the wild. More importantly, we also find that some conclusions drawn from indoor datasets cannot be generalized to real applications. Therefore, the primary goal of this paper is to present a comprehensive benchmark study for better practicality rather than only a particular model for better performance. To this end, we first develop a flexible and efficient gait recognition codebase named OpenGait. Based on OpenGait, we deeply revisit the recent development of gait recognition by re-conducting the ablative experiments. Encouragingly, we detect some unperfect parts of certain prior woks, as well as new insights. Inspired by these discoveries, we develop a structurally simple, empirically powerful, and practically robust baseline model, Gait-Base. Experimentally, we comprehensively compare Gait-Base with many current gait recognition methods on multiple public datasets, and the results reflect that GaitBase achieves significantly strong performance in most cases regardless of indoor or outdoor situations. Code is available at https://github.com/ShiqiYu/OpenGait.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
WOS记录号
WOS:001062522102002
EI入藏号
20234114867000
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10203133
引用统计
被引频次[WOS]:93
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559163
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology
2.Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong
3.School of Artificial Intelligence, Beijing Normal University
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chao Fan,Junhao Liang,Chuanfu Shen,et al. OpenGait: Revisiting Gait Recognition Toward Better Practicality[C],2023:9707-9716.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
CVPR2023-OpenGait.pd(1165KB)会议论文--限制开放CC BY-NC-SA
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chao Fan]的文章
[Junhao Liang]的文章
[Chuanfu Shen]的文章
百度学术
百度学术中相似的文章
[Chao Fan]的文章
[Junhao Liang]的文章
[Chuanfu Shen]的文章
必应学术
必应学术中相似的文章
[Chao Fan]的文章
[Junhao Liang]的文章
[Chuanfu Shen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。