中文版 | English
题名

Uno-Qa: an Unsupervised Anomaly-Aware Framework with Test-Time Clustering for Octa Image Quality Assessment

作者
DOI
发表日期
2023
会议名称
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI
ISSN
1945-7928
ISBN
978-1-6654-7359-0
会议录名称
卷号
2023-April
页码
1-5
会议日期
18-21 April 2023
会议地点
Cartagena, Colombia
摘要
Medical image quality assessment (MIQA) is a vital prerequisite in various medical image analysis applications. Most existing MIQA algorithms are fully supervised that request a large amount of annotated data. However, annotating medical images is time-consuming and labor-intensive. In this paper, we propose an unsupervised anomaly-aware framework with test-time clustering for optical coherence tomography angiography (OCTA) image quality assessment in a setting wherein only a set of high-quality samples are accessible in the training phase. Specifically, a feature-embedding-based low-quality representation module is proposed to quantify the quality of OCTA images and then to discriminate between outstanding quality and non-outstanding quality. Within the non-outstanding quality class, to further distinguish gradable images from ungradable ones, we perform dimension reduction and clustering of multi-scale image features extracted by the trained OCTA quality representation network. Extensive experiments are conducted on one publicly accessible dataset sOCTA-3×3-10k, with superiority of our proposed framework being successfully established.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20233914806408
EI主题词
Image quality ; Medical imaging ; Quality control
EI分类号
Biomedical Engineering:461.1 ; Optical Devices and Systems:741.3 ; Imaging Techniques:746 ; Quality Assurance and Control:913.3
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10230810
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559164
专题工学院_电子与电气工程系
作者单位
Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Juntao Chen,Li Lin,Pujin Cheng,et al. Uno-Qa: an Unsupervised Anomaly-Aware Framework with Test-Time Clustering for Octa Image Quality Assessment[C],2023:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Juntao Chen]的文章
[Li Lin]的文章
[Pujin Cheng]的文章
百度学术
百度学术中相似的文章
[Juntao Chen]的文章
[Li Lin]的文章
[Pujin Cheng]的文章
必应学术
必应学术中相似的文章
[Juntao Chen]的文章
[Li Lin]的文章
[Pujin Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。