题名 | Semi-Supervised Surgical Video Semantic Segmentation with Cross Supervision of Inter-Frame |
作者 | |
通讯作者 | Yan Hu |
DOI | |
发表日期 | 2023
|
会议名称 | 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)
|
ISSN | 1945-7928
|
ISBN | 978-1-6654-7359-0
|
会议录名称 | |
卷号 | 2023-April
|
页码 | 1-5
|
会议日期 | 18-21 April 2023
|
会议地点 | Cartagena, Colombia
|
摘要 | Accurate surgical video semantic segmentation is vital for computer-aided surgery. Semi-supervised algorithms produce pseudo labels to solve the problem of the lack of labels, as it is very difficult to obtain the pixel-level segmentation labels from doctors or researchers. However, most of the algorithms consider the videos as independent images, which cannot solve some issues caused by complex surgery scenarios, such as blurred instruments. The paper proposes a novel Cross Supervision of Inter-frame (CSI) method using inter-frame information from surgery video to crosswise supervise semantic segmentation. Specifically, we design Inter-frame Information Transformation (I2T) modules to transfer features with class prototypes between continuous frames mutually. Besides, we utilize ground truth to supervise inter-frame features for labeled frames, and for unlabeled frames, we propose a cross pseudo loss and a pixel-wise contrastive loss as the constraints. Extensive experiments are performed on a publicly available cataract surgery dataset, which proves that our CSI method improves the segmentation accuracy after considering the inter-frame information. |
关键词 | |
学校署名 | 第一
; 通讯
|
相关链接 | [IEEE记录] |
收录类别 | |
WOS记录号 | WOS:001062050500053
|
EI入藏号 | 20233914806273
|
EI主题词 | Pixels
; Semantics
; Surgery
|
EI分类号 | Medicine and Pharmacology:461.6
; Artificial Intelligence:723.4
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10230375 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559169 |
专题 | 工学院_斯发基斯可信自主研究院 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
通讯作者单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
第一作者的第一单位 | 斯发基斯可信自主系统研究院; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Derui Li,Yan Hu,Junyong Shen,et al. Semi-Supervised Surgical Video Semantic Segmentation with Cross Supervision of Inter-Frame[C],2023:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论