中文版 | English
题名

HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation

作者
DOI
发表日期
2023
ISSN
1063-6919
ISBN
979-8-3503-0130-4
会议录名称
卷号
2023-June
页码
17163-17173
会议日期
17-24 June 2023
会议地点
Vancouver, BC, Canada
摘要
In this paper, we focus on the problem of category-level object pose estimation, which is challenging due to the large intra-category shape variation. 3D graph convolution (3D-GC) based methods have been widely used to extract local geometric features, but they have limitations for complex shaped objects and are sensitive to noise. Moreover, the scale and translation invariant properties of 3D-GC restrict the perception of an object's size and translation information. In this paper, we propose a simple network structure, the HS-layer, which extends 3D-GC to extract hybrid scope latent features from point cloud data for category-level object pose estimation tasks. The proposed HS-layer: 1) is able to perceive local-global geometric structure and global information, 2) is robust to noise, and 3) can encode size and translation information. Our experiments show that the simple replacement of the 3D-GC layer with the proposed HS-layer on the baseline method (GPV-Pose) achieves a significant improvement, with the performance increased by 14.5% on 5°2cm metric and 10.3% on IoU75. Our method outperforms the state-of-the-art methods by a large margin (8.3% on 5°2cm, 6.9% on IoU75) on REAL275 dataset and runs in real-time (50 FPS)11Codeisavailable: https://github.com/Lynne-Zheng-Linfang/HS-Pose.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
WOS记录号
WOS:001062531301045
EI入藏号
20234114867532
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10204635
引用统计
被引频次[WOS]:16
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559172
专题工学院_机械与能源工程系
作者单位
1.Department of Mechanical and Energy Engineering, Southern University of Science and Technology
2.School of Computer Science, University of Birmingham
第一作者单位机械与能源工程系
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Linfang Zheng,Chen Wang,Yinghan Sun,et al. HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation[C],2023:17163-17173.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Linfang Zheng]的文章
[Chen Wang]的文章
[Yinghan Sun]的文章
百度学术
百度学术中相似的文章
[Linfang Zheng]的文章
[Chen Wang]的文章
[Yinghan Sun]的文章
必应学术
必应学术中相似的文章
[Linfang Zheng]的文章
[Chen Wang]的文章
[Yinghan Sun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。