题名 | HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 1063-6919
|
ISBN | 979-8-3503-0130-4
|
会议录名称 | |
卷号 | 2023-June
|
页码 | 17163-17173
|
会议日期 | 17-24 June 2023
|
会议地点 | Vancouver, BC, Canada
|
摘要 | In this paper, we focus on the problem of category-level object pose estimation, which is challenging due to the large intra-category shape variation. 3D graph convolution (3D-GC) based methods have been widely used to extract local geometric features, but they have limitations for complex shaped objects and are sensitive to noise. Moreover, the scale and translation invariant properties of 3D-GC restrict the perception of an object's size and translation information. In this paper, we propose a simple network structure, the HS-layer, which extends 3D-GC to extract hybrid scope latent features from point cloud data for category-level object pose estimation tasks. The proposed HS-layer: 1) is able to perceive local-global geometric structure and global information, 2) is robust to noise, and 3) can encode size and translation information. Our experiments show that the simple replacement of the 3D-GC layer with the proposed HS-layer on the baseline method (GPV-Pose) achieves a significant improvement, with the performance increased by 14.5% on 5°2cm metric and 10.3% on IoU75. Our method outperforms the state-of-the-art methods by a large margin (8.3% on 5°2cm, 6.9% on IoU75) on REAL275 dataset and runs in real-time (50 FPS)11Codeisavailable: https://github.com/Lynne-Zheng-Linfang/HS-Pose. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
WOS记录号 | WOS:001062531301045
|
EI入藏号 | 20234114867532
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10204635 |
引用统计 |
被引频次[WOS]:16
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559172 |
专题 | 工学院_机械与能源工程系 |
作者单位 | 1.Department of Mechanical and Energy Engineering, Southern University of Science and Technology 2.School of Computer Science, University of Birmingham |
第一作者单位 | 机械与能源工程系 |
第一作者的第一单位 | 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Linfang Zheng,Chen Wang,Yinghan Sun,et al. HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation[C],2023:17163-17173.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论