中文版 | English
题名

Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation

作者
DOI
发表日期
2023
ISSN
1063-6919
ISBN
979-8-3503-0130-4
会议录名称
卷号
2023-June
页码
3728-3738
会议日期
17-24 June 2023
会议地点
Vancouver, BC, Canada
摘要
Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. We take inspiration from the biological plausibility learning where the neuron responses are tuned based on a local synapse-change procedure and activated by competitive lateral inhibition rules. Based on these feed-forward learning rules, we design a soft Hebbian learning process which provides an unsupervised and effective mechanism for online adaptation. We observe that the performance of this feed-forward Hebbian learning for fully test-time adaptation can be significantly improved by incorporating a feedback neuromodulation layer. It is able to fine-tune the neuron responses based on the external feedback generated by the error backpropagation from the top inference layers. This leads to our proposed neuro-modulated Hebbian learning (NHL) method for fully test-time adaptation. With the unsupervised feed-forward soft Hebbian learning being combined with a learned neuromodulator to capture feedback from external responses, the source model can be effectively adapted during the testing process. Experimental results on benchmark datasets demonstrate that our proposed method can significantly improve the adaptation performance of network models and outperforms existing state-of-the-art methods.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
WOS记录号
WOS:001058542604006
EI入藏号
20234114868428
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10203770
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559176
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
2.Advanced Computing and Storage Laboratory, Huawei Technologies Co., Ltd., Shenzhen, China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Yushun Tang,Ce Zhang,Heng Xu,et al. Neuro-Modulated Hebbian Learning for Fully Test-Time Adaptation[C],2023:3728-3738.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yushun Tang]的文章
[Ce Zhang]的文章
[Heng Xu]的文章
百度学术
百度学术中相似的文章
[Yushun Tang]的文章
[Ce Zhang]的文章
[Heng Xu]的文章
必应学术
必应学术中相似的文章
[Yushun Tang]的文章
[Ce Zhang]的文章
[Heng Xu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。