题名 | Deep Learning-Assisted Target Classification Using OTFS Signaling |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 2474-9133
|
ISBN | 979-8-3503-4541-4
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 10-12 Aug. 2023
|
会议地点 | Dalian, China
|
摘要 | A new modulation method, orthogonal time frequency space (OTFS), can support reliable data transmission by representing the signal in the delay-Doppler (DD) domain for high-mobility applications. In particular, the parameters of in-environment reflectors can be obtained from the representation of wireless channels in the DD domain, making it possible to provide sensing capability. In this paper, we propose a deep learning (DL) based target classification method using OTFS signaling. In our approach, to enhance the network performance, a 2D correlation method is utilized to extract features for data preprocessing. Subsequently, inspired by the residual learning technique, a deep neural network incorporating the attention mechanism is designed to distinguish sensing targets from the coarse estimation results. Through simulation experiments, we demonstrate that our proposed network exhibits superior performance in terms of efficiency and accuracy for OTFS sensing applications. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20234014814220
|
EI主题词 | Learning systems
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10233827 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559180 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Shenzhen, China 2.Taiyuan university of technology, Taiyuan, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Ziyu Yan,Long Tan,Xiaoqi Zhang,et al. Deep Learning-Assisted Target Classification Using OTFS Signaling[C],2023:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论