题名 | Accelerating Vision-Language Pretraining with Free Language Modeling |
作者 | |
DOI | |
发表日期 | 2023
|
ISSN | 1063-6919
|
ISBN | 979-8-3503-0130-4
|
会议录名称 | |
卷号 | 2023-June
|
页码 | 23161-23170
|
会议日期 | 17-24 June 2023
|
会议地点 | Vancouver, BC, Canada
|
摘要 | The state of the arts in vision-language pretraining (VLP) achieves exemplary performance but suffers from high training costs resulting from slow convergence and long training time, especially on large-scale web datasets. An essential obstacle to training efficiency lies in the entangled prediction rate (percentage of tokens for reconstruction) and corruption rate (percentage of corrupted tokens) in masked language modeling (MLM), that is, a proper corruption rate is achieved at the cost of a large portion of output tokens being excluded from prediction loss. To accelerate the convergence of VLP, we propose a new pretraining task, namely, free language modeling (FLM), that enables a 100% prediction rate with arbitrary corruption rates. FLM successfully frees the prediction rate from the tie-up with the corruption rate while allowing the corruption spans to be customized for each token to be predicted. FLM-trained models are encouraged to learn better and faster given the same GPU time by exploiting bidirectional contexts more flexibly. Extensive experiments show FLM could achieve an impressive 2.5 × pretraining time reduction in comparison to the MLM-based methods, while keeping competitive performance on both vision-language understanding and generation tasks. Code will be public at https://github.com/TencentARC/FLM. |
关键词 | |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
WOS记录号 | WOS:001062531307047
|
EI入藏号 | 20234114867548
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10204651 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559186 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology 2.ARC Lab 3.Tencent PCG 4.The University of Hong Kong |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Teng Wang,Yixiao Ge,Feng Zheng,et al. Accelerating Vision-Language Pretraining with Free Language Modeling[C],2023:23161-23170.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论