中文版 | English
题名

Dense-Localizing Audio-Visual Events in Untrimmed Videos: A Large-Scale Benchmark and Baseline

作者
DOI
发表日期
2023
ISSN
1063-6919
ISBN
979-8-3503-0130-4
会议录名称
页码
22942-22951
会议日期
17-24 June 2023
会议地点
Vancouver, BC, Canada
摘要
Existing audio-visual event localization (AVE) handles manually trimmed videos with only a single instance in each of them. However, this setting is unrealistic as natural videos often contain numerous audio-visual events with different categories. To better adapt to real-life applications, in this paper we focus on the task of dense-localizing audio-visual events, which aims to jointly localize and recognize all audio-visual events occurring in an untrimmed video. The problem is challenging as it requires fine-grained audio-visual scene and context understanding. To tackle this problem, we introduce the first Untrimmed Audio-Visual (UnAV-J 00) dataset, which contains 10K untrimmed videos with over 30K audio-visual events. Each video has 2.8 audio-visual events on average, and the events are usually related to each other and might co-occur as in real-life scenes. Next, we formulate the task using a new learning-based framework, which is capable of fully integrating audio and visual modalities to localize audio-visual events with various lengths and capture dependencies between them in a single pass. Extensive experiments demonstrate the effectiveness of our method as well as the significance of multi-scale cross-modal perception and dependency modeling for this task. The dataset and code are available at https://unav100.github.io.
关键词
学校署名
第一
相关链接[IEEE记录]
收录类别
WOS记录号
WOS:001062531307026
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10205028
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559187
专题南方科技大学
作者单位
1.Southern University of Science and Technology
2.University of Birmingham
3.Shandong University
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Tiantian Geng,Teng Wang,Jinming Duan,et al. Dense-Localizing Audio-Visual Events in Untrimmed Videos: A Large-Scale Benchmark and Baseline[C],2023:22942-22951.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tiantian Geng]的文章
[Teng Wang]的文章
[Jinming Duan]的文章
百度学术
百度学术中相似的文章
[Tiantian Geng]的文章
[Teng Wang]的文章
[Jinming Duan]的文章
必应学术
必应学术中相似的文章
[Tiantian Geng]的文章
[Teng Wang]的文章
[Jinming Duan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。