中文版 | English
题名

Expectation-Maximization Regularised Deep Learning for Tumour Segmentation

作者
DOI
发表日期
2023
ISSN
1945-7928
ISBN
978-1-6654-7359-0
会议录名称
卷号
2023-April
页码
1-5
会议日期
18-21 April 2023
会议地点
Cartagena, Colombia
摘要
We present an expectation-maximization (EM) regularized deep learning (EMReDL) approach for weakly supervised tumor segmentation using partially labelled MRI. The proposed framework is demonstrated on glioblastoma, characterized by diffusion infiltration. Physiological MRI provides specific information regarding infiltration over structural MRI but is hindered by its low resolution for precise labeling. To exploit partial labels, we design two components in EMReDL: 1) a physiological prior prediction model: a neural network-based binary classifier trained by the labels of core tumor and normal-appearing regions. The trained classifier generates a physiological prior map passed to 2) a segmentation model regularized under an EM framework for weakly supervised learning. We evaluate the performance on a dataset with preoperative multiparametric and recurrence MRI. Results show that EMReDL can effectively segment the infiltrated tumor from the partially labeled MRI, with an accuracy higher than the model trained without physiological MRI and other competing approaches. We will publish the code with example data soon.
关键词
学校署名
其他
相关链接[IEEE记录]
收录类别
WOS记录号
WOS:001062050500250
EI入藏号
20233914806171
EI主题词
Deep learning ; Maximum principle ; Medical imaging ; Physiological models ; Physiology ; Supervised learning
EI分类号
Biomedical Engineering:461.1 ; Biological Materials and Tissue Engineering:461.2 ; Ergonomics and Human Factors Engineering:461.4 ; Biology:461.9 ; Imaging Techniques:746
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10230573
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559193
专题工学院_计算机科学与工程系
作者单位
1.Department of Clinical Neuroscience, University of Cambridge
2.Department of Computer Science and Engineering, Southern University of Science and Technology
3.Department of Computer Science, University of Bath
4.Department of Applied Mathematics and Theoretical Physics, University of Cambridge
推荐引用方式
GB/T 7714
Chao Li,Wenjian Huang,Xi Chen,et al. Expectation-Maximization Regularised Deep Learning for Tumour Segmentation[C],2023:1-5.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chao Li]的文章
[Wenjian Huang]的文章
[Xi Chen]的文章
百度学术
百度学术中相似的文章
[Chao Li]的文章
[Wenjian Huang]的文章
[Xi Chen]的文章
必应学术
必应学术中相似的文章
[Chao Li]的文章
[Wenjian Huang]的文章
[Xi Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。