题名 | A Convolutional-Transformer Network for Crack Segmentation with Boundary Awareness |
作者 | |
DOI | |
发表日期 | 2023
|
会议名称 | 30th IEEE International Conference on Image Processing (ICIP)
|
ISSN | 1522-4880
|
ISBN | 978-1-7281-9836-1
|
会议录名称 | |
页码 | 86-90
|
会议日期 | 8-11 Oct. 2023
|
会议地点 | Kuala Lumpur, Malaysia
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Cracks play a crucial role in assessing the safety and durability of manufactured buildings. However, the long and sharp topological features and complex background of cracks make the task of crack segmentation extremely challenging. In this paper, we propose a novel convolutional-transformer network based on encoder-decoder architecture to solve this challenge. Particularly, we designed a Dilated Residual Block (DRB) and a Boundary Awareness Module (BAM). The DRB pays attention to the local detail of cracks and adjusts the feature dimension for other blocks as needed. And the BAM learns the boundary features from the dilated crack label. Furthermore, the DRB is combined with a lightweight transformer that captures global information to serve as an effective encoder. Experimental results show that the proposed network performs better than state-of-the-art algorithms on two typical datasets. Datasets, code, and trained models are available for research at https://github.com/HqiTao/CT-crackseg. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001106821000017
|
EI入藏号 | 20240115301618
|
EI主题词 | Computer vision
; Convolution
; Deep learning
; Learning systems
; Signal encoding
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Computer Applications:723.5
; Vision:741.2
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10222276 |
引用统计 |
被引频次[WOS]:10
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559203 |
专题 | 南方科技大学 |
作者单位 | 1.Guangxi University, Nanning, China 2.Peng Cheng Laboratory, Shenzhen, China 3.Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Huaqi Tao,Bingxi Liu,Jinqiang Cui,et al. A Convolutional-Transformer Network for Crack Segmentation with Boundary Awareness[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023:86-90.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论