题名 | FDIO: Extended Kalman Filter-Aided Deep Inertial Odometry |
作者 | |
DOI | |
发表日期 | 2023
|
ISBN | 979-8-3503-0018-5
|
会议录名称 | |
页码 | 482-487
|
会议日期 | 8-10 July 2023
|
会议地点 | Sanya, China
|
摘要 | Smartphone-based deep inertial odometry has recently gained great research interest, which utilizes the inertial measurement unit (IMU) and deep learning technique for relative states estimate. In this paper, we propose FDIO: a Filter-aided Deep Inertial Odometry, which utilizes an extended Kalman filter (EKF) for orientation tracking following by a learning module for position estimation. Our inertial odometry requires only the inertial signals without relying on external device orientation information. In the position learning module, this paper proposes a novel representation of the pedestrians' velocity and a robust loss for regression. The proposed FDIO is validated by using the public RoNIN dataset. Experimental results show that our model outperforms state-of-the-art deep inertial odometry architectures. |
关键词 | |
学校署名 | 其他
|
相关链接 | [IEEE记录] |
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10218871 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559240 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electronic Engineering, Robotics, Perception and Artificial Intelligence Lab, The Chinese University of Hong Kong, Hong Kong SAR, China 2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China |
推荐引用方式 GB/T 7714 |
Yingying Wang,Hu Cheng,Max Q.-H. Meng. FDIO: Extended Kalman Filter-Aided Deep Inertial Odometry[C],2023:482-487.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论