中文版 | English
题名

FDIO: Extended Kalman Filter-Aided Deep Inertial Odometry

作者
DOI
发表日期
2023
ISBN
979-8-3503-0018-5
会议录名称
页码
482-487
会议日期
8-10 July 2023
会议地点
Sanya, China
摘要
Smartphone-based deep inertial odometry has recently gained great research interest, which utilizes the inertial measurement unit (IMU) and deep learning technique for relative states estimate. In this paper, we propose FDIO: a Filter-aided Deep Inertial Odometry, which utilizes an extended Kalman filter (EKF) for orientation tracking following by a learning module for position estimation. Our inertial odometry requires only the inertial signals without relying on external device orientation information. In the position learning module, this paper proposes a novel representation of the pedestrians' velocity and a robust loss for regression. The proposed FDIO is validated by using the public RoNIN dataset. Experimental results show that our model outperforms state-of-the-art deep inertial odometry architectures.
关键词
学校署名
其他
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10218871
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559240
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering, Robotics, Perception and Artificial Intelligence Lab, The Chinese University of Hong Kong, Hong Kong SAR, China
2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Yingying Wang,Hu Cheng,Max Q.-H. Meng. FDIO: Extended Kalman Filter-Aided Deep Inertial Odometry[C],2023:482-487.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yingying Wang]的文章
[Hu Cheng]的文章
[Max Q.-H. Meng]的文章
百度学术
百度学术中相似的文章
[Yingying Wang]的文章
[Hu Cheng]的文章
[Max Q.-H. Meng]的文章
必应学术
必应学术中相似的文章
[Yingying Wang]的文章
[Hu Cheng]的文章
[Max Q.-H. Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。