中文版 | English
题名

Extracting Privacy-Preserving Subgraphs in Federated Graph Learning using Information Bottleneck

作者
通讯作者Zhang, Chenhan
DOI
发表日期
2023
会议名称
18th ACM ASIA Conference on Computer and Communications Security (ASIA CCS)
会议录名称
页码
109-121
会议日期
JUL 10-14, 2023
会议地点
null,Melbourne,AUSTRALIA
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
As graphs are getting larger and larger, federated graph learning (FGL) is increasingly adopted, which can train graph neural networks (GNNs) on distributed graph data. However, the privacy of graph data in FGL systems is an inevitable concern due to multiparty participation. Recent studies indicated that the gradient leakage of trained GNN can be used to infer private graph data information utilizing model inversion attacks (MIA). Moreover, the central server can legitimately access the localGNNgradients, which makes MIA difficult to counter if the attacker is at the central server. In this paper, we first identify a realistic crowdsourcing-based FGL scenario where MIA from the central server towards clients' subgraph structures is a nonnegligible threat. Then, we propose a defense scheme, Subgraph-Out-of-Subgraph (SOS), to mitigate such MIA and meanwhile, maintain the prediction accuracy. We leverage the information bottleneck (IB) principle to extract task-relevant subgraphs out of the clients' original subgraphs. The extracted IB-subgraphs are used for local GNN training and the local model updates will have less information about the original subgraphs, which renders the MIA harder to infer the original subgraph structure. Particularly, we devise a novel neural network-powered approach to overcome the intractability of graph data's mutual information estimation in IB optimization. Additionally, we design a subgraph generation algorithm for finally yielding reasonable IB-subgraphs from the optimization results. Extensive experiments demonstrate the efficacy of the proposed scheme, the FGL system trained on IB-subgraphs is more robust against MIA attacks with minuscule accuracy loss.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Australian Research Council (ARC)["LP190100676","DP200101374"]
WOS研究方向
Computer Science ; Mathematics ; Telecommunications
WOS类目
Computer Science, Artificial Intelligence ; Mathematics, Applied ; Telecommunications
WOS记录号
WOS:001053857900010
EI入藏号
20233414587976
EI主题词
Learning systems ; Privacy-preserving techniques
EI分类号
Telecommunication; Radar, Radio and Television:716 ; Telephone Systems and Related Technologies; Line Communications:718 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559257
专题南方科技大学
作者单位
1.Univ Technol Sydney, Sydney, Australia
2.Southern Univ Sci & Technol, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Chenhan,Wang, Weiqi,Yu, James J. Q.,et al. Extracting Privacy-Preserving Subgraphs in Federated Graph Learning using Information Bottleneck[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023:109-121.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Chenhan]的文章
[Wang, Weiqi]的文章
[Yu, James J. Q.]的文章
百度学术
百度学术中相似的文章
[Zhang, Chenhan]的文章
[Wang, Weiqi]的文章
[Yu, James J. Q.]的文章
必应学术
必应学术中相似的文章
[Zhang, Chenhan]的文章
[Wang, Weiqi]的文章
[Yu, James J. Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。