中文版 | English
题名

A Fractional-order dual-continuum model to capture non-Fickian solute transport in a regional-scale fractured aquifer

作者
通讯作者Zheng, Chunmiao
发表日期
2023-09-01
DOI
发表期刊
ISSN
0169-7722
EISSN
1873-6009
卷号258
摘要
Contaminant transport in fractured media exhibits complex dynamics, including multiple peaks in breakthrough curves (BTCs) and non-Fickian diffusion, thereby posing significant challenges to the application of traditional transport models. Here we undertook a detailed study of a natural-gradient tracer test conducted in a regional-scale fractured carbonate aquifer situated in southwestern Germany, where the observed BTCs contained both dual peaks and positive skewness. These BTCs were used to optimize parameters and interpret their physical meanings for several transport models, including the dual-continuum model (DCM) and the fractional derivative equation (FDE) model. Tracer concentration distributions were simulated in both single-and dual-continuum media employing the DCM and FDE models. Our results demonstrated that while the DCM model could reasonably replicate the bimodal BTC, the FDE (which accounts for solute retention) outperformed in capturing the heavy-tailed BTC. This was attributed to the limitations of grid-based numerical models that assume Fickian diffusion and fail to map small-scale medium heterogeneity exhaustively. In contrast, a parsimonious model like the FDE, with upscaled parameters, was found to be more effective in capturing regional-scale non-Fickian transport. To further characterize the multiple BTC peaks the standard FDE missed, we proposed a fractional derivative dual-continuum model (fDCM). This model was found to be adept at capturing both the multi-peak and late-time heavy tail in the BTC. Our study thus opens an alternate pathway for modeling solute transport in regional-scale fractured to partially karstified aquifers.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
German Research Foundation (DFG)[SFB 1253/1] ; National Natural Science Foundation of China[41931292]
WOS研究方向
Environmental Sciences & Ecology ; Geology ; Water Resources
WOS类目
Environmental Sciences ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:001062781100001
出版者
EI入藏号
20233414582690
EI主题词
Aquifers ; Continuum mechanics ; Diffusion in liquids ; Diffusion in solids ; Fracture ; Hydrogeology
EI分类号
Groundwater:444.2 ; Geology:481.1 ; Classical Physics; Quantum Theory; Relativity:931 ; Mechanics:931.1 ; Materials Science:951
ESI学科分类
ENVIRONMENT/ECOLOGY
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559323
专题工学院_环境科学与工程学院
作者单位
1.Peking Univ, Inst Water Sci, Coll Engn, Beijing, Peoples R China
2.Southern Univ Sci & Technol, Sch Environm Sci & Engn, State Environm Protect Key Lab Integrated Surface, Shenzhen, Peoples R China
3.Univ Tubingen, Dept Geosci, Tubingen, Germany
4.Eastern Inst Technol, Eastern Inst Adv Study, Ningbo, Peoples R China
5.Univ Alabama, Dept Geol Sci, Tuscaloosa, AL USA
6.Southern Univ Sci & Technol, Shenzhen, Peoples R China
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院;  南方科技大学
推荐引用方式
GB/T 7714
Dong, Peiyao,Yin, Maosheng,Zhang, Yong,et al. A Fractional-order dual-continuum model to capture non-Fickian solute transport in a regional-scale fractured aquifer[J]. JOURNAL OF CONTAMINANT HYDROLOGY,2023,258.
APA
Dong, Peiyao.,Yin, Maosheng.,Zhang, Yong.,Chen, Kewei.,Finkel, Michael.,...&Zheng, Chunmiao.(2023).A Fractional-order dual-continuum model to capture non-Fickian solute transport in a regional-scale fractured aquifer.JOURNAL OF CONTAMINANT HYDROLOGY,258.
MLA
Dong, Peiyao,et al."A Fractional-order dual-continuum model to capture non-Fickian solute transport in a regional-scale fractured aquifer".JOURNAL OF CONTAMINANT HYDROLOGY 258(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Dong, Peiyao]的文章
[Yin, Maosheng]的文章
[Zhang, Yong]的文章
百度学术
百度学术中相似的文章
[Dong, Peiyao]的文章
[Yin, Maosheng]的文章
[Zhang, Yong]的文章
必应学术
必应学术中相似的文章
[Dong, Peiyao]的文章
[Yin, Maosheng]的文章
[Zhang, Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。