中文版 | English
题名

Machine Learning Accelerated Prediction of Self-Trapped Excitons in Double Halide Perovskites

作者
通讯作者Chen, Rui; Huang, Bolong
发表日期
2023-08-30
DOI
发表期刊
ISSN
2699-9412
EISSN
2699-9412
卷号4期号:12
摘要
["Broadband emission induced by self-trapped excitons (STEs) in double halide perovskites (DHPs) has received continuous attention in recent years. However, the comprehensive understanding of the STEs formation mechanism is still in its early stage. The corresponding roles of different B-site cations also remain unclear in these advanced materials. The lack of an effective STEs database for DHPs hinders the efficient discovery of potential optoelectronic materials with strong STEs. Herein, a systematic STEs database is built for DHPs through density functional theory (DFT) calculations and proposed a highly efficient predictive machine learning (ML) model of the Huang-Rhys factor S for the first time. Results reveal the different contributions of two B-site metal cations to the formation of STEs in DHPs, which helps to understand the in-depth nature of STEs. Based on the accurate predictions of the effective phonon frequency ?(LO), it is further realized that the prediction of S without conducting the time-consuming phonon property calculations of DHPs offers new opportunities for exploring the STEs. Combining DFT calculations and ML techniques, this study supplies an effective approach to efficiently discover the potential novel optoelectronic materials, which provides important guidance for the future exploration of promising solid-state phosphors.","The in-depth investigations of self-trapped excitons in double halide perovskites still have significant challenges, which are important for solid-state phosphors developments. Herein, the introduction of machine learning techniques has successfully realized the predictions of the Huang-Rhys factor for the first time and the contributions of B site metals, offering effective guidance for future research. image (C) 2023 WILEY-VCH GmbH"]
关键词
相关链接[来源记录]
收录类别
ESCI ; EI
语种
英语
学校署名
通讯
资助项目
The authors gratefully acknowledge the support from the National Key Ramp;amp;D Program of China (2021YFA1501101), the National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme (N_PolyU502/21), the National Nat[N_PolyU502/21] ; National Key Ramp;amp;D Program of China[CRS_PolyU504_22] ; National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme[JCYJ20220531090807017] ; Hong Kong Polytechnic University[2023A1515012219] ; null[2021YFA1501101]
WOS研究方向
Science & Technology - Other Topics ; Energy & Fuels ; Materials Science
WOS类目
Green & Sustainable Science & Technology ; Energy & Fuels ; Materials Science, Multidisciplinary
WOS记录号
WOS:001058277600001
出版者
EI入藏号
20233614664165
EI主题词
Density functional theory ; Electron-phonon interactions ; Excitons ; Machine learning ; Optoelectronic devices ; Perovskite ; Positive ions
EI分类号
Minerals:482.2 ; Artificial Intelligence:723.4 ; Optical Devices and Systems:741.3 ; Probability Theory:922.1 ; Atomic and Molecular Physics:931.3 ; Quantum Theory; Quantum Mechanics:931.4 ; Solid State Physics:933
Scopus记录号
2-s2.0-85169313590
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559345
专题工学院_电子与电气工程系
作者单位
1.Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hung Hom, Kowloon, Hong Kong 999077, Peoples R China
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
3.Hong Kong Polytech Univ, Res Ctr Carbon Strateg Catalysis, Hung Hom, Kowloon, Hong Kong 999077, Peoples R China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Chen, Baian,Chen, Rui,Huang, Bolong. Machine Learning Accelerated Prediction of Self-Trapped Excitons in Double Halide Perovskites[J]. ADVANCED ENERGY AND SUSTAINABILITY RESEARCH,2023,4(12).
APA
Chen, Baian,Chen, Rui,&Huang, Bolong.(2023).Machine Learning Accelerated Prediction of Self-Trapped Excitons in Double Halide Perovskites.ADVANCED ENERGY AND SUSTAINABILITY RESEARCH,4(12).
MLA
Chen, Baian,et al."Machine Learning Accelerated Prediction of Self-Trapped Excitons in Double Halide Perovskites".ADVANCED ENERGY AND SUSTAINABILITY RESEARCH 4.12(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Baian]的文章
[Chen, Rui]的文章
[Huang, Bolong]的文章
百度学术
百度学术中相似的文章
[Chen, Baian]的文章
[Chen, Rui]的文章
[Huang, Bolong]的文章
必应学术
必应学术中相似的文章
[Chen, Baian]的文章
[Chen, Rui]的文章
[Huang, Bolong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。