中文版 | English
题名

Deep learning discovery of macroscopic governing equations for viscous gravity currents from microscopic simulation data

作者
通讯作者Zhang, Dongxiao
发表日期
2023-08-01
DOI
发表期刊
ISSN
1420-0597
EISSN
1573-1499
卷号27期号:6页码:987-1000
摘要
Although deep learning has been successfully applied in a variety of science and engineering problems owing to its strong high-dimensional nonlinear mapping capability, it is of limited use in scientific knowledge discovery. In this work, we propose a deep learning based framework to discover the macroscopic governing equation of an important geophysical process, i.e., viscous gravity current, based on high-resolution microscopic simulation data without the need for prior knowledge of underlying terms. For two typical scenarios with different viscosity ratios, the deep learning based equations exactly capture the same dominant terms as the theoretically derived equations for describing long-term asymptotic behaviors, which validates the proposed framework. Unknown macroscopic equations are then obtained for describing short-term behaviors, and additional deep-learned compensation terms are eventually discovered. Comparison of posterior tests shows that the deep learning based PDEs actually perform better than the theoretically derived PDEs in predicting evolving viscous gravity currents for both long-term and short-term regimes. Moreover, the proposed framework is proven to be very robust against non-biased data noise for training, which is up to 20%. Consequently, the presented deep learning framework shows considerable potential for discovering unrevealed intrinsic laws in scientific semantic space from raw experimental or simulation results in data space.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
null[52288101]
WOS研究方向
Computer Science ; Geology
WOS类目
Computer Science, Interdisciplinary Applications ; Geosciences, Multidisciplinary
WOS记录号
WOS:001060007600001
出版者
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85168885339
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559346
专题工学院_环境科学与工程学院
作者单位
1.Peng Cheng Lab, Frontier Res Ctr, Shenzhen 518000, Peoples R China
2.Peking Univ, Coll Engn, Beijing 100871, Peoples R China
3.Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Peoples R China
4.Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Zeng, Junsheng,Xu, Hao,Chen, Yuntian,et al. Deep learning discovery of macroscopic governing equations for viscous gravity currents from microscopic simulation data[J]. COMPUTATIONAL GEOSCIENCES,2023,27(6):987-1000.
APA
Zeng, Junsheng,Xu, Hao,Chen, Yuntian,&Zhang, Dongxiao.(2023).Deep learning discovery of macroscopic governing equations for viscous gravity currents from microscopic simulation data.COMPUTATIONAL GEOSCIENCES,27(6),987-1000.
MLA
Zeng, Junsheng,et al."Deep learning discovery of macroscopic governing equations for viscous gravity currents from microscopic simulation data".COMPUTATIONAL GEOSCIENCES 27.6(2023):987-1000.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeng, Junsheng]的文章
[Xu, Hao]的文章
[Chen, Yuntian]的文章
百度学术
百度学术中相似的文章
[Zeng, Junsheng]的文章
[Xu, Hao]的文章
[Chen, Yuntian]的文章
必应学术
必应学术中相似的文章
[Zeng, Junsheng]的文章
[Xu, Hao]的文章
[Chen, Yuntian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。