题名 | Multiscale topology optimisation for porous composite structures with stress-constraint and clustered microstructures |
作者 | |
通讯作者 | Chen, Yuan; Fu, Kunkun |
发表日期 | 2023-11-01
|
DOI | |
发表期刊 | |
ISSN | 0045-7825
|
EISSN | 1879-2138
|
卷号 | 416 |
摘要 | While porous composites are drawing growing attention for their excellent lightweight and multifunctional characteristics, inherent stress concentration in these porous composites often presents a main concern of structural integrity. This study aims to develop a multiscale topology optimisation (MTO) method for design of porous composites with clustered microstructures under a prescribed stress constraint. First, the concurrent topology optimisation (TO) for both macrostructures and microstructures are implemented via a multiscale algorithm. Meanwhile, a clustering technique is implemented based on a so-called k-means method to simultaneously determine the allowable volume fraction and microstructural configuration. Second, a consistent density-and-strain based clustering technique is developed for both 2D and 3D multiscale TO. Finally, two benchmark design examples, namely Messerschmitt-Bolkow-Blohm (MBB) and L-bracket structures, are implemented using the presented MTO method by considering either 2D or 3D situations to demonstrate the design effectiveness. The results indicate that, when optimising a high-stiffness porous composites subject to the stress constraint, the maximum von Mises stresses of the 2D MBB and L-bracket structures are well restrained, which are respectively 20% and 29% lower than those without the stress-constraint. In design of a 3D L-bracket, the present MTO method can achieve around 19% reduction in the maximum stress. The study demonstrates the importance of stress constraint to the topological design of multiscale porous composite structures. & COPY; 2023 Elsevier B.V. All rights reserved. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Key Research and Development Program of China[ZDSYS20220527171404011]
; Shenzhen Key Laboratory of Intelligent Manufacturing for Continuous Carbon Fibre Reinforced Composites[Y01966113]
; Scientific Research Start-up Funds["12172257","2022KQNCX069"]
; null[2022YFB4602000]
; null[Y01966213]
|
WOS研究方向 | Engineering
; Mathematics
; Mechanics
|
WOS类目 | Engineering, Multidisciplinary
; Mathematics, Interdisciplinary Applications
; Mechanics
|
WOS记录号 | WOS:001058728900001
|
出版者 | |
EI入藏号 | 20233314566125
|
EI主题词 | Benchmarking
; Cluster analysis
; Composite materials
; K-means clustering
; Structure (composition)
; Topology
|
EI分类号 | Computer Software, Data Handling and Applications:723
; Information Sources and Analysis:903.1
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Materials Science:951
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559361 |
专题 | 工学院_系统设计与智能制造学院 |
作者单位 | 1.Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China 2.Southern Univ Sci & Technol, Shenzhen Key Lab Intelligent Mfg Continuous Carbon, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg SDIM, Shenzhen, Peoples R China 4.Univ Sydney, Ctr Adv Mat Technol CAMT, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学; 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Wei, Guangkai,Chen, Yuan,Li, Qing,et al. Multiscale topology optimisation for porous composite structures with stress-constraint and clustered microstructures[J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,2023,416.
|
APA |
Wei, Guangkai,Chen, Yuan,Li, Qing,&Fu, Kunkun.(2023).Multiscale topology optimisation for porous composite structures with stress-constraint and clustered microstructures.COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING,416.
|
MLA |
Wei, Guangkai,et al."Multiscale topology optimisation for porous composite structures with stress-constraint and clustered microstructures".COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 416(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论