中文版 | English
题名

Machine Learning-Accelerated Development of Perovskite Optoelectronics Toward Efficient Energy Harvesting and Conversion

作者
通讯作者Chen, Rui; Huang, Bolong
发表日期
2023-08-30
DOI
发表期刊
ISSN
2699-9412
卷号4
摘要
For next-generation optoelectronic devices with efficient energy harvesting and conversion, designing advanced perovskite materials with exceptional optoelectrical properties is highly critical. However, the conventional trial-and-error approaches usually lead to long research periods, high costs, and low efficiency, which hinder the efficient development of optoelectronic devices for broad applications. The machine learning (ML) technique emerges as a powerful tool for materials designs, which supplies promising solutions to break the current bottlenecks in the developments of perovskite optoelectronics. Herein, the fundamental workflow of ML to interpret the working mechanisms step by step from a general perspective is first demonstrated. Then, the significant contributions of ML in designs and explorations of perovskite optoelectronics regarding novel materials discovery, the underlying mechanisms interpretation, and large-scale information process strategy are illustrated. Based on current research progress, the potential of ML techniques in cross-disciplinary directions to achieve the boost of material designs and optimizations toward perovskite materials is pointed out. In the end, the current advances of ML in perovskite optoelectronics are summarized and the future development directions are shown. This perspective supplies important insights into the developments of perovskite materials for the next generation of efficient and stable optoelectronic devices.
关键词
相关链接[来源记录]
收录类别
ESCI ; EI
语种
英语
学校署名
通讯
资助项目
The authors gratefully acknowledge support from the National Key Ramp;amp;D Program of China (2021YFA1501101), National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme (N_PolyU502/21), National Natural Science[N_PolyU502/21] ; National Key Ramp;amp;D Program of China[CRS_PolyU504_22] ; National Natural Science Foundation of China/Research Grant Council of Hong Kong Joint Research Scheme[JCYJ20220531090807017] ; Hong Kong Polytechnic University[2023A1515012219] ; null[2021YFA1501101]
WOS研究方向
Science & Technology - Other Topics ; Energy & Fuels ; Materials Science
WOS类目
Green & Sustainable Science & Technology ; Energy & Fuels ; Materials Science, Multidisciplinary
WOS记录号
WOS:001058251700001
出版者
EI入藏号
20233614664171
EI主题词
Energy harvesting ; Optoelectronic devices ; Perovskite
EI分类号
Minerals:482.2 ; Energy Conversion Issues:525.5 ; Artificial Intelligence:723.4 ; Optical Devices and Systems:741.3
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559368
专题工学院_电子与电气工程系
作者单位
1.Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hung Hom, Hong Kong 999077, Peoples R China
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
3.Hong Kong Polytech Univ, Res Ctr Carbon Strateg Catalysis, Hung Hom, Kowloon, Hong Kong 999077, Peoples R China
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
推荐引用方式
GB/T 7714
Chen, Baian,Chen, Rui,Huang, Bolong. Machine Learning-Accelerated Development of Perovskite Optoelectronics Toward Efficient Energy Harvesting and Conversion[J]. ADVANCED ENERGY AND SUSTAINABILITY RESEARCH,2023,4.
APA
Chen, Baian,Chen, Rui,&Huang, Bolong.(2023).Machine Learning-Accelerated Development of Perovskite Optoelectronics Toward Efficient Energy Harvesting and Conversion.ADVANCED ENERGY AND SUSTAINABILITY RESEARCH,4.
MLA
Chen, Baian,et al."Machine Learning-Accelerated Development of Perovskite Optoelectronics Toward Efficient Energy Harvesting and Conversion".ADVANCED ENERGY AND SUSTAINABILITY RESEARCH 4(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Baian]的文章
[Chen, Rui]的文章
[Huang, Bolong]的文章
百度学术
百度学术中相似的文章
[Chen, Baian]的文章
[Chen, Rui]的文章
[Huang, Bolong]的文章
必应学术
必应学术中相似的文章
[Chen, Baian]的文章
[Chen, Rui]的文章
[Huang, Bolong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。