中文版 | English
题名

YoloCurvSeg: You only label one noisy skeleton for vessel-style curvilinear structure segmentation

作者
通讯作者Tang,Xiaoying
发表日期
2023-12-01
DOI
发表期刊
ISSN
1361-8415
EISSN
1361-8423
卷号90
摘要
Weakly-supervised learning (WSL) has been proposed to alleviate the conflict between data annotation cost and model performance through employing sparsely-grained (i.e., point-, box-, scribble-wise) supervision and has shown promising performance, particularly in the image segmentation field. However, it is still a very challenging task due to the limited supervision, especially when only a small number of labeled samples are available. Additionally, almost all existing WSL segmentation methods are designed for star-convex structures which are very different from curvilinear structures such as vessels and nerves. In this paper, we propose a novel sparsely annotated segmentation framework for curvilinear structures, named YoloCurvSeg. A very essential component of YoloCurvSeg is image synthesis. Specifically, a background generator delivers image backgrounds that closely match the real distributions through inpainting dilated skeletons. The extracted backgrounds are then combined with randomly emulated curves generated by a Space Colonization Algorithm-based foreground generator and through a multilayer patch-wise contrastive learning synthesizer. In this way, a synthetic dataset with both images and curve segmentation labels is obtained, at the cost of only one or a few noisy skeleton annotations. Finally, a segmenter is trained with the generated dataset and possibly an unlabeled dataset. The proposed YoloCurvSeg is evaluated on four publicly available datasets (OCTA500, CORN, DRIVE and CHASEDB1) and the results show that YoloCurvSeg outperforms state-of-the-art WSL segmentation methods by large margins. With only one noisy skeleton annotation (respectively 0.14%, 0.03%, 1.40%, and 0.65% of the full annotation), YoloCurvSeg achieves more than 97% of the fully-supervised performance on each dataset. Code and datasets will be released at https://github.com/llmir/YoloCurvSeg.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62071210];
WOS研究方向
Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001073424000001
出版者
EI入藏号
20233714700231
EI主题词
Digital storage ; Image annotation ; Large dataset ; Medical imaging ; Musculoskeletal system ; Supervised learning
EI分类号
Biomedical Engineering:461.1 ; Biomechanics, Bionics and Biomimetics:461.3 ; Data Storage, Equipment and Techniques:722.1 ; Data Processing and Image Processing:723.2 ; Imaging Techniques:746
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85169976722
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559413
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,China
2.Department of Electrical and Electronic Engineering,University of Hong Kong,Hong Kong
3.Jiaxing Research Institute,Southern University of Science and Technology,Jiaxing,China
第一作者单位电子与电气工程系;  南方科技大学
通讯作者单位电子与电气工程系;  南方科技大学
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Lin,Li,Peng,Linkai,He,Huaqing,et al. YoloCurvSeg: You only label one noisy skeleton for vessel-style curvilinear structure segmentation[J]. Medical Image Analysis,2023,90.
APA
Lin,Li.,Peng,Linkai.,He,Huaqing.,Cheng,Pujin.,Wu,Jiewei.,...&Tang,Xiaoying.(2023).YoloCurvSeg: You only label one noisy skeleton for vessel-style curvilinear structure segmentation.Medical Image Analysis,90.
MLA
Lin,Li,et al."YoloCurvSeg: You only label one noisy skeleton for vessel-style curvilinear structure segmentation".Medical Image Analysis 90(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Li]的文章
[Peng,Linkai]的文章
[He,Huaqing]的文章
百度学术
百度学术中相似的文章
[Lin,Li]的文章
[Peng,Linkai]的文章
[He,Huaqing]的文章
必应学术
必应学术中相似的文章
[Lin,Li]的文章
[Peng,Linkai]的文章
[He,Huaqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。