题名 | Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials |
作者 | |
通讯作者 | Zhao,Junlei; Hua,Mengyuan |
发表日期 | 2023-12-01
|
DOI | |
发表期刊 | |
EISSN | 2057-3960
|
卷号 | 9期号:1 |
摘要 | GaO is a wide-band gap semiconductor of emergent importance for applications in electronics and optoelectronics. However, vital information of the properties of complex coexisting GaO polymorphs and low-symmetry disordered structures is missing. We develop two types of machine-learning Gaussian approximation potentials (ML-GAPs) for GaO with high accuracy for β/κ/α/δ/γ polymorphs and generality for disordered stoichiometric structures. We release two versions of interatomic potentials in parallel, namely soapGAP and tabGAP, for high accuracy and exceeding speedup, respectively. Both potentials can reproduce the structural properties of all the five polymorphs in an exceptional agreement with ab initio results, meanwhile boost the computational efficiency with 5 × 10 and 2 × 10 computing speed increases compared to density functional theory, respectively. Moreover, the GaO liquid-solid phase transition proceeds in three different stages. This experimentally unrevealed complex dynamics can be understood in terms of distinctly different mobilities of O and Ga sublattices in the interfacial layer. |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
EI入藏号 | 20233614685237
|
EI主题词 | Computation theory
; Computational efficiency
; Density functional theory
; Energy gap
; Gallium compounds
; Machine learning
|
EI分类号 | Semiconducting Materials:712.1
; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Artificial Intelligence:723.4
; Probability Theory:922.1
; Atomic and Molecular Physics:931.3
; Quantum Theory; Quantum Mechanics:931.4
|
Scopus记录号 | 2-s2.0-85169666792
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:28
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559417 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Department of Physics,University of Helsinki,Helsinki,P.O. Box 43,FI-00014,Finland 3.FCAI: Finnish Center for Artificial Intelligence,University of Helsinki,Helsinki,P.O. Box 43,FI-00014,Finland 4.School of Nuclear Science and Technology,Xi’an Jiaotong University,Xi’an,Shaanxi,710049,China 5.Helsinki Institute of Physics,University of Helsinki,Helsinki,P.O. Box 43,FI-00014,Finland |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhao,Junlei,Byggmästar,Jesper,He,Huan,et al. Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials[J]. npj Computational Materials,2023,9(1).
|
APA |
Zhao,Junlei,Byggmästar,Jesper,He,Huan,Nordlund,Kai,Djurabekova,Flyura,&Hua,Mengyuan.(2023).Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials.npj Computational Materials,9(1).
|
MLA |
Zhao,Junlei,et al."Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials".npj Computational Materials 9.1(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论