中文版 | English
题名

Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials

作者
通讯作者Zhao,Junlei; Hua,Mengyuan
发表日期
2023-12-01
DOI
发表期刊
EISSN
2057-3960
卷号9期号:1
摘要
GaO is a wide-band gap semiconductor of emergent importance for applications in electronics and optoelectronics. However, vital information of the properties of complex coexisting GaO polymorphs and low-symmetry disordered structures is missing. We develop two types of machine-learning Gaussian approximation potentials (ML-GAPs) for GaO with high accuracy for β/κ/α/δ/γ polymorphs and generality for disordered stoichiometric structures. We release two versions of interatomic potentials in parallel, namely soapGAP and tabGAP, for high accuracy and exceeding speedup, respectively. Both potentials can reproduce the structural properties of all the five polymorphs in an exceptional agreement with ab initio results, meanwhile boost the computational efficiency with 5 × 10 and 2 × 10 computing speed increases compared to density functional theory, respectively. Moreover, the GaO liquid-solid phase transition proceeds in three different stages. This experimentally unrevealed complex dynamics can be understood in terms of distinctly different mobilities of O and Ga sublattices in the interfacial layer.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20233614685237
EI主题词
Computation theory ; Computational efficiency ; Density functional theory ; Energy gap ; Gallium compounds ; Machine learning
EI分类号
Semiconducting Materials:712.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Probability Theory:922.1 ; Atomic and Molecular Physics:931.3 ; Quantum Theory; Quantum Mechanics:931.4
Scopus记录号
2-s2.0-85169666792
来源库
Scopus
引用统计
被引频次[WOS]:28
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559417
专题工学院_电子与电气工程系
作者单位
1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Physics,University of Helsinki,Helsinki,P.O. Box 43,FI-00014,Finland
3.FCAI: Finnish Center for Artificial Intelligence,University of Helsinki,Helsinki,P.O. Box 43,FI-00014,Finland
4.School of Nuclear Science and Technology,Xi’an Jiaotong University,Xi’an,Shaanxi,710049,China
5.Helsinki Institute of Physics,University of Helsinki,Helsinki,P.O. Box 43,FI-00014,Finland
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhao,Junlei,Byggmästar,Jesper,He,Huan,et al. Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials[J]. npj Computational Materials,2023,9(1).
APA
Zhao,Junlei,Byggmästar,Jesper,He,Huan,Nordlund,Kai,Djurabekova,Flyura,&Hua,Mengyuan.(2023).Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials.npj Computational Materials,9(1).
MLA
Zhao,Junlei,et al."Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials".npj Computational Materials 9.1(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao,Junlei]的文章
[Byggmästar,Jesper]的文章
[He,Huan]的文章
百度学术
百度学术中相似的文章
[Zhao,Junlei]的文章
[Byggmästar,Jesper]的文章
[He,Huan]的文章
必应学术
必应学术中相似的文章
[Zhao,Junlei]的文章
[Byggmästar,Jesper]的文章
[He,Huan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。