中文版 | English
题名

Morphology measurements by AFM tapping without causing surface damage: A phase shift characterization

作者
通讯作者Yan,Yongda; Geng,Yanquan
发表日期
2023-12-01
DOI
发表期刊
ISSN
0304-3991
EISSN
1879-2723
卷号254
摘要

The morphology measurement of a surface can be done by using an atomic force microscope (AFM). However, it is difficult to ensure that the measurement does not introduce any damage to the sample surface. This paper proposes that phase shift, the phase change between the original surface and scanned area, can provide a characteristic signal of the tip-surface interaction. On a poly (methyl methacrylate) thin film, the present investigation explored the relationship between phase shift and nondestructive surface morphology measurement under the tapping mode of an AFM. The study showed that when the drive amplitude was doubled, the phase shift reached from 0.47° to 1.85°. Under this condition, wrinkles became observable. With the tip radius in the range of 15–20 nm, no phase shift appeared between a scanned area and the original surface after multiple measurements. In this case, the tip-surface energy dissipation was in the range of 10–35 eV, showing a nondestructive interaction of the surface with the AFM tip. When the tip radius was about 55 nm, under the same tip excitation parameters, the energy dissipation per tap varied from 60 to 110 eV, and a phase shift occurred in the range of 0.02–0.64°, while the surface plastic deformation was still extremely minor after multiple tip scanning. A higher phase shift was occurred on the softer surface attributed to multiple scanning under tapping mode. The study found that the phase shift characteristics was a more sensible measure to signify the transition from a nondestructive to a destructive surface morphology measurement by using the tapping mode of an AFM.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
National Natural Science Foundation of China[52035004] ; National Natural Science Foundation of China[52222512] ; National Natural Science Foundation of China[52293401] ; Shenzhen Science and Technology Innovation Program[RCBS20210706092216025]
WOS研究方向
Microscopy
WOS类目
Microscopy
WOS记录号
WOS:001069799600001
出版者
EI入藏号
20233514633850
EI主题词
Energy dissipation ; Esters ; Nondestructive examination ; Surface morphology
EI分类号
Energy Losses (industrial and residential):525.4 ; Organic Compounds:804.1 ; Physical Properties of Gases, Liquids and Solids:931.2 ; Materials Science:951
ESI学科分类
CHEMISTRY
Scopus记录号
2-s2.0-85168770153
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559426
专题工学院_创新智造研究院
工学院_力学与航空航天工程系
作者单位
1.Shenzhen Key Laboratory of Cross-scale Manufacturing Mechanics,Southern University of Science and Technology,Shenzhen,518055,China
2.SUSTech Institute for Manufacturing Innovation,Southern University of Science and Technology,Shenzhen,518055,China
3.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.The State Key Laboratory of Robotics and Systems,Robotics Institute,Harbin Institute of Technology,Harbin,150001,China
5.Center for Precision Engineering,Harbin Institute of Technology,Harbin,150001,China
第一作者单位南方科技大学;  创新智造研究院;  力学与航空航天工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
He,Yang,Yan,Yongda,Geng,Yanquan. Morphology measurements by AFM tapping without causing surface damage: A phase shift characterization[J]. Ultramicroscopy,2023,254.
APA
He,Yang,Yan,Yongda,&Geng,Yanquan.(2023).Morphology measurements by AFM tapping without causing surface damage: A phase shift characterization.Ultramicroscopy,254.
MLA
He,Yang,et al."Morphology measurements by AFM tapping without causing surface damage: A phase shift characterization".Ultramicroscopy 254(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[He,Yang]的文章
[Yan,Yongda]的文章
[Geng,Yanquan]的文章
百度学术
百度学术中相似的文章
[He,Yang]的文章
[Yan,Yongda]的文章
[Geng,Yanquan]的文章
必应学术
必应学术中相似的文章
[He,Yang]的文章
[Yan,Yongda]的文章
[Geng,Yanquan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。