题名 | On high order positivity-preserving well-balanced finite volume methods for the Euler equations with gravitation |
作者 | |
通讯作者 | Xing,Yulong |
发表日期 | 2023-11-01
|
DOI | |
发表期刊 | |
ISSN | 0021-9991
|
EISSN | 1090-2716
|
卷号 | 492 |
摘要 | This paper studies three high-order structure-preserving finite volume weighted essentially non-oscillatory (WENO) methods, which are not only well balanced (WB) for a general known hydrostatic equilibrium state but also preserve the positivity of density and pressure, for the compressible Euler equations under gravitational fields. These methods are built on a simple local scaling positivity-preserving (PP) limiter and a modified WENO-ZQ reconstruction exactly preserving the cell average value and scaling invariance. The WB properties of these three methods are achieved based on suitable numerical fluxes and approximation to the gravitational source terms. Based on some convex decomposition techniques as well as several critical properties of the admissible states and numerical flux, we carry out rigorous positivity-preserving analyses for these three WB schemes. We rigorously prove that the three WB methods, coupled with the PP limiter and a strong-stability-preserving time discretization, are always PP under suitable Courant-Friedrichs-Lewy conditions. Extensive numerical examples are provided to confirm WB and PP properties of three methods. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[12071392];National Natural Science Foundation of China[12171227];National Key Research and Development Program of China[2022YFA1004501];National Science Foundation[DMS-1753581];National Science Foundation[DMS-2309590];
|
WOS研究方向 | Computer Science
; Physics
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Physics, Mathematical
|
WOS记录号 | WOS:001072126300001
|
出版者 | |
EI入藏号 | 20233614690645
|
EI主题词 | Euler equations
; Finite volume method
; Gravitational effects
|
EI分类号 | Fluid Flow, General:631.1
; Mathematics:921
; Numerical Methods:921.6
; Gravitation, Relativity and String Theory:931.5
|
ESI学科分类 | PHYSICS
|
Scopus记录号 | 2-s2.0-85169837641
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559497 |
专题 | 理学院_数学系 深圳国际数学中心(杰曼诺夫数学中心)(筹) 理学院_深圳国家应用数学中心 |
作者单位 | 1.Beijing Computational Science Research Center,Beijing,100193,China 2.Department of Mathematics & SUSTech International Center for Mathematics,Southern University of Science and Technology,National Center for Applied Mathematics Shenzhen (NCAMS),Shenzhen,Guangdong,518055,China 3.School of Mathematical Sciences,Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing,Xiamen University,Xiamen,Fujian,361005,China 4.Department of Mathematics,The Ohio State University,Columbus,43210,United States |
推荐引用方式 GB/T 7714 |
Ren,Yupeng,Wu,Kailiang,Qiu,Jianxian,et al. On high order positivity-preserving well-balanced finite volume methods for the Euler equations with gravitation[J]. Journal of Computational Physics,2023,492.
|
APA |
Ren,Yupeng,Wu,Kailiang,Qiu,Jianxian,&Xing,Yulong.(2023).On high order positivity-preserving well-balanced finite volume methods for the Euler equations with gravitation.Journal of Computational Physics,492.
|
MLA |
Ren,Yupeng,et al."On high order positivity-preserving well-balanced finite volume methods for the Euler equations with gravitation".Journal of Computational Physics 492(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论