中文版 | English
题名

On high order positivity-preserving well-balanced finite volume methods for the Euler equations with gravitation

作者
通讯作者Xing,Yulong
发表日期
2023-11-01
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号492
摘要
This paper studies three high-order structure-preserving finite volume weighted essentially non-oscillatory (WENO) methods, which are not only well balanced (WB) for a general known hydrostatic equilibrium state but also preserve the positivity of density and pressure, for the compressible Euler equations under gravitational fields. These methods are built on a simple local scaling positivity-preserving (PP) limiter and a modified WENO-ZQ reconstruction exactly preserving the cell average value and scaling invariance. The WB properties of these three methods are achieved based on suitable numerical fluxes and approximation to the gravitational source terms. Based on some convex decomposition techniques as well as several critical properties of the admissible states and numerical flux, we carry out rigorous positivity-preserving analyses for these three WB schemes. We rigorously prove that the three WB methods, coupled with the PP limiter and a strong-stability-preserving time discretization, are always PP under suitable Courant-Friedrichs-Lewy conditions. Extensive numerical examples are provided to confirm WB and PP properties of three methods.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[12071392];National Natural Science Foundation of China[12171227];National Key Research and Development Program of China[2022YFA1004501];National Science Foundation[DMS-1753581];National Science Foundation[DMS-2309590];
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:001072126300001
出版者
EI入藏号
20233614690645
EI主题词
Euler equations ; Finite volume method ; Gravitational effects
EI分类号
Fluid Flow, General:631.1 ; Mathematics:921 ; Numerical Methods:921.6 ; Gravitation, Relativity and String Theory:931.5
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85169837641
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559497
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
理学院_深圳国家应用数学中心
作者单位
1.Beijing Computational Science Research Center,Beijing,100193,China
2.Department of Mathematics & SUSTech International Center for Mathematics,Southern University of Science and Technology,National Center for Applied Mathematics Shenzhen (NCAMS),Shenzhen,Guangdong,518055,China
3.School of Mathematical Sciences,Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing,Xiamen University,Xiamen,Fujian,361005,China
4.Department of Mathematics,The Ohio State University,Columbus,43210,United States
推荐引用方式
GB/T 7714
Ren,Yupeng,Wu,Kailiang,Qiu,Jianxian,et al. On high order positivity-preserving well-balanced finite volume methods for the Euler equations with gravitation[J]. Journal of Computational Physics,2023,492.
APA
Ren,Yupeng,Wu,Kailiang,Qiu,Jianxian,&Xing,Yulong.(2023).On high order positivity-preserving well-balanced finite volume methods for the Euler equations with gravitation.Journal of Computational Physics,492.
MLA
Ren,Yupeng,et al."On high order positivity-preserving well-balanced finite volume methods for the Euler equations with gravitation".Journal of Computational Physics 492(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ren,Yupeng]的文章
[Wu,Kailiang]的文章
[Qiu,Jianxian]的文章
百度学术
百度学术中相似的文章
[Ren,Yupeng]的文章
[Wu,Kailiang]的文章
[Qiu,Jianxian]的文章
必应学术
必应学术中相似的文章
[Ren,Yupeng]的文章
[Wu,Kailiang]的文章
[Qiu,Jianxian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。