中文版 | English
题名

PRAT: Accurate object tracking based on progressive attention

作者
通讯作者Zeng,Bi
发表日期
2023-11-01
DOI
发表期刊
ISSN
0952-1976
EISSN
1873-6769
卷号126
摘要
Object tracking aims to estimate the position of a given object in subsequent video sequences. One of the research focuses in tracking is feature fusion as the similar response maps generated by feature fusion can significantly affect tracking accuracy. However, traditional naive correlation and depthwise correlation blur the spatial information and do not perform well in low resolution, similar objects, partial occlusion and other scenes. In this paper, we propose a progressive attention tracker called PRAT. It performs sufficient similarity learning between the template and search region to achieve more accurate object tracking. Specifically, PRAT performs self-enhancement on template features, and uses unidirectional cross enhancement and progressive enhancement to fuse template features into search features. Therefore, the search region features have the ability of target perception. In addition, we also design a convolution-based network to replace the FFN in the original Transformer to enhance local semantics. Experiments on six challenging benchmarks show that our PRAT achieves state-of-the-art performance. Particularly, on the challenging UAV123, PRAT sets a new record with 0.703 SUC score. PRAT runs at 63 fps on GPU.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[62172111];National Natural Science Foundation of China[U21A20478];
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Multidisciplinary ; Engineering, Electrical & Electronic
WOS记录号
WOS:001073726800001
出版者
EI入藏号
20233514660891
EI主题词
Benchmarking ; Tracking (position)
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85169050797
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559503
专题工学院_电子与电气工程系
作者单位
1.School of Computer Science and Technology,Guangdong University of Technology,Guangzhou,510006,China
2.School of Information Science and Technology,Zhongkai University of Agriculture and Engineering,Guangzhou,510225,China
3.Department of Electronic and Electrical Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Zeng,Yulin,Zeng,Bi,Hu,Huiting,et al. PRAT: Accurate object tracking based on progressive attention[J]. Engineering Applications of Artificial Intelligence,2023,126.
APA
Zeng,Yulin,Zeng,Bi,Hu,Huiting,&Zhang,Hong.(2023).PRAT: Accurate object tracking based on progressive attention.Engineering Applications of Artificial Intelligence,126.
MLA
Zeng,Yulin,et al."PRAT: Accurate object tracking based on progressive attention".Engineering Applications of Artificial Intelligence 126(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeng,Yulin]的文章
[Zeng,Bi]的文章
[Hu,Huiting]的文章
百度学术
百度学术中相似的文章
[Zeng,Yulin]的文章
[Zeng,Bi]的文章
[Hu,Huiting]的文章
必应学术
必应学术中相似的文章
[Zeng,Yulin]的文章
[Zeng,Bi]的文章
[Hu,Huiting]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。