中文版 | English
题名

Atom-centered machine-learning force field package

作者
通讯作者Li,Lei
发表日期
2023-11-01
DOI
发表期刊
ISSN
0010-4655
EISSN
1879-2944
卷号292页码:108883
摘要

In recent years, machine learning algorithms have been widely used for constructing force fields with an accuracy of ab initio methods and the efficiency of classical force fields. Here, we developed a python-based atom-centered machine-learning force field (PyAMFF) package to provide a simple and efficient platform for fitting and using machine learning force fields by implementing an atom-centered neural-network algorithm with Behler-Parrinello symmetry functions as structural fingerprints. The following three features are included in PyAMFF: (1) integrated Fortran modules for fast fingerprint calculations and Python modules for user-friendly integration through scripts and facile extension of future algorithms; (2) a pure Fortran backend to interface with the software, including the long-timescale dynamic simulation package EON, enabling both molecular dynamic simulations and adaptive kinetic Monte Carlo simulations with machine-learning force fields; and (3) integration with the Atomic Simulation Environment package for active learning and ML-based algorithm development. Here, we demonstrate an efficient parallelization of PyAMFF in terms of CPU and memory usage and show that the Fortran-based PyAMFF calculator exhibits a linear scaling relationship with the number of symmetry functions and the system size. Program summary: Program title: python-based atom-centered machine-learning force field (PyAMFF) CPC Library link to program files: https://doi.org/10.17632/fsn6dkcvrv.1 Developer's repository link: https://gitlab.com/pyamff/pyamff Licensing provisions: Apache License, 2.0 Nature of problem: Determine an approximate (surrogate) model based upon atomic forces and energies from density functional theory (DFT). With a surrogate model that is less computationally expensive to evaluate than DFT, there can be a rapid exploration of the potential energy surface, accelerated optimization to minima and saddle points, and ultimately, accelerated design of active materials where the kinetics are key to the material function. Solution method: The atomic environments of training data are calculated in terms of Behler-Parrinello fingerprints. These fingerprints are passed to a neural network which is trained to reproduce the energy and force of the training data. A parallel implementation and Fortran backend allow for efficient training and calculation of the resulting surrogate model. Examples of long-time simulations of materials on the surrogate model surfaces are provided.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Guangdong Science and Technology Department[2021B1212040001] ; National Key Research and Development Program of China[2022YFA1503102] ; National Natural Science Foundation of China[22179058] ; National Science Foundation[CHE-2102317] ; Welch Foundation[F-1841]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:001078446500001
出版者
EI入藏号
20233514659004
EI主题词
Atoms ; Density Functional Theory ; Design For Testability ; FORTRAN (Programming Language) ; HTTP ; Intelligent Systems ; Kinetics ; Learning Algorithms ; Machine Learning ; Molecular Dynamics ; Monte Carlo Methods ; Potential Energy ; Quantum Chemistry
EI分类号
Fluid Flow, General:631.1 ; Computer Programming Languages:723.1.1 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2 ; Physical Chemistry:801.4 ; Probability Theory:922.1 ; Mathematical Statistics:922.2 ; Classical Physics ; Quantum Theory ; Relativity:931 ; Atomic And Molecular Physics:931.3 ; Quantum Mechanics:931.4
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85168992479
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559505
专题工学院_材料科学与工程系
作者单位
1.Department of Materials Science and Engineering,Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices,Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
2.Department of Chemistry,the Oden Institute for Computational Engineering and Sciences,University of Texas at Austin,Austin,78712-0231,United States
第一作者单位材料科学与工程系
通讯作者单位材料科学与工程系
第一作者的第一单位材料科学与工程系
推荐引用方式
GB/T 7714
Li,Lei,Ciufo,Ryan A.,Lee,Jiyoung,et al. Atom-centered machine-learning force field package[J]. Computer Physics Communications,2023,292:108883.
APA
Li,Lei.,Ciufo,Ryan A..,Lee,Jiyoung.,Zhou,Chuan.,Lin,Bo.,...&Henkelman,Graeme.(2023).Atom-centered machine-learning force field package.Computer Physics Communications,292,108883.
MLA
Li,Lei,et al."Atom-centered machine-learning force field package".Computer Physics Communications 292(2023):108883.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Lei]的文章
[Ciufo,Ryan A.]的文章
[Lee,Jiyoung]的文章
百度学术
百度学术中相似的文章
[Li,Lei]的文章
[Ciufo,Ryan A.]的文章
[Lee,Jiyoung]的文章
必应学术
必应学术中相似的文章
[Li,Lei]的文章
[Ciufo,Ryan A.]的文章
[Lee,Jiyoung]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。