题名 | Achieving Superior Tensile Performance in Individual Metal−Organic Framework Crystals |
作者 | |
通讯作者 | Cheng,Junye; Boles,Steven; Zheng,Guangping |
发表日期 | 2023-09-07
|
DOI | |
发表期刊 | |
ISSN | 0935-9648
|
EISSN | 1521-4095
|
卷号 | 35期号:36 |
摘要 | Rapid advances in the engineering application prospects of metal−organic framework (MOF) materials necessitate an urgent in-depth understanding of their mechanical properties. This work demonstrates unprecedented recoverable elastic deformation of Ni-tetraphenylporphyrins (Ni-TCPP) MOF nanobelts with a tensile strain as high as 14%, and a projected yield strength-to-Young's modulus ratio exceeding the theoretical limit (≈10%) for crystalline materials. Based on first-principles simulations, the observed behavior of MOF crystal can be attributed to the mechanical deformation induced conformation transition and the formation of helical configuration of dislocations under high stresses, arising from their organic ligand building blocks in the crystal structures. The investigations of the mechanical properties along with electromechanical properties demonstrate that MOF materials have exciting application potential for biomechanics integrated systems, flexible electronics, and nanoelectromechanical devices. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | NI论文
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[52102368];Hong Kong Polytechnic University[847 W];
|
WOS研究方向 | Chemistry
; Science & Technology - Other Topics
; Materials Science
; Physics
|
WOS类目 | Chemistry, Multidisciplinary
; Chemistry, Physical
; Nanoscience & Nanotechnology
; Materials Science, Multidisciplinary
; Physics, Applied
; Physics, Condensed Matter
|
WOS记录号 | WOS:001037869800001
|
出版者 | |
EI入藏号 | 20233114465992
|
EI主题词 | Elastic moduli
; Flexible electronics
; Nickel compounds
; Tensile strain
|
EI分类号 | Electronic Equipment, General Purpose and Industrial:715
; Mechanics:931.1
; Materials Science:951
|
ESI学科分类 | MATERIALS SCIENCE
|
Scopus记录号 | 2-s2.0-85170024768
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559625 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Department of Materials Science,Shenzhen MSU-BIT University,Shenzhen,Guangdong Province,517182,China 2.Department of Electrical Engineering,The Hong Kong Polytechnic University,Kowloon,999077,Hong Kong 3.Department of Mechanical Engineering,Hong Kong Polytechnic University,Kowloon,999077,Hong Kong 4.Department of Materials Science and Engineering,and Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials,Southern University of Science and Technology,Shenzhen,518055,China 5.Cryo-EM Center,Southern University of Science and Technology,Shenzhen,518055,China 6.Department of Materials Science and Engineering,City University of Hong Kong,999077,Hong Kong |
推荐引用方式 GB/T 7714 |
Cheng,Junye,Ran,Sijia,Li,Tian,et al. Achieving Superior Tensile Performance in Individual Metal−Organic Framework Crystals[J]. Advanced Materials,2023,35(36).
|
APA |
Cheng,Junye.,Ran,Sijia.,Li,Tian.,Yan,Ming.,Wu,Jing.,...&Zheng,Guangping.(2023).Achieving Superior Tensile Performance in Individual Metal−Organic Framework Crystals.Advanced Materials,35(36).
|
MLA |
Cheng,Junye,et al."Achieving Superior Tensile Performance in Individual Metal−Organic Framework Crystals".Advanced Materials 35.36(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论