中文版 | English
题名

Achieving Superior Tensile Performance in Individual Metal−Organic Framework Crystals

作者
通讯作者Cheng,Junye; Boles,Steven; Zheng,Guangping
发表日期
2023-09-07
DOI
发表期刊
ISSN
0935-9648
EISSN
1521-4095
卷号35期号:36
摘要
Rapid advances in the engineering application prospects of metal−organic framework (MOF) materials necessitate an urgent in-depth understanding of their mechanical properties. This work demonstrates unprecedented recoverable elastic deformation of Ni-tetraphenylporphyrins (Ni-TCPP) MOF nanobelts with a tensile strain as high as 14%, and a projected yield strength-to-Young's modulus ratio exceeding the theoretical limit (≈10%) for crystalline materials. Based on first-principles simulations, the observed behavior of MOF crystal can be attributed to the mechanical deformation induced conformation transition and the formation of helical configuration of dislocations under high stresses, arising from their organic ligand building blocks in the crystal structures. The investigations of the mechanical properties along with electromechanical properties demonstrate that MOF materials have exciting application potential for biomechanics integrated systems, flexible electronics, and nanoelectromechanical devices.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI论文
学校署名
其他
资助项目
National Natural Science Foundation of China[52102368];Hong Kong Polytechnic University[847 W];
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号
WOS:001037869800001
出版者
EI入藏号
20233114465992
EI主题词
Elastic moduli ; Flexible electronics ; Nickel compounds ; Tensile strain
EI分类号
Electronic Equipment, General Purpose and Industrial:715 ; Mechanics:931.1 ; Materials Science:951
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85170024768
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559625
专题工学院_材料科学与工程系
作者单位
1.Department of Materials Science,Shenzhen MSU-BIT University,Shenzhen,Guangdong Province,517182,China
2.Department of Electrical Engineering,The Hong Kong Polytechnic University,Kowloon,999077,Hong Kong
3.Department of Mechanical Engineering,Hong Kong Polytechnic University,Kowloon,999077,Hong Kong
4.Department of Materials Science and Engineering,and Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials,Southern University of Science and Technology,Shenzhen,518055,China
5.Cryo-EM Center,Southern University of Science and Technology,Shenzhen,518055,China
6.Department of Materials Science and Engineering,City University of Hong Kong,999077,Hong Kong
推荐引用方式
GB/T 7714
Cheng,Junye,Ran,Sijia,Li,Tian,et al. Achieving Superior Tensile Performance in Individual Metal−Organic Framework Crystals[J]. Advanced Materials,2023,35(36).
APA
Cheng,Junye.,Ran,Sijia.,Li,Tian.,Yan,Ming.,Wu,Jing.,...&Zheng,Guangping.(2023).Achieving Superior Tensile Performance in Individual Metal−Organic Framework Crystals.Advanced Materials,35(36).
MLA
Cheng,Junye,et al."Achieving Superior Tensile Performance in Individual Metal−Organic Framework Crystals".Advanced Materials 35.36(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cheng,Junye]的文章
[Ran,Sijia]的文章
[Li,Tian]的文章
百度学术
百度学术中相似的文章
[Cheng,Junye]的文章
[Ran,Sijia]的文章
[Li,Tian]的文章
必应学术
必应学术中相似的文章
[Cheng,Junye]的文章
[Ran,Sijia]的文章
[Li,Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。