题名 | Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode |
作者 | |
通讯作者 | Peng,Chao; Xue,Dongfeng |
发表日期 | 2023-09-06
|
DOI | |
发表期刊 | |
ISSN | 2590-2393
|
EISSN | 2590-2385
|
卷号 | 6期号:9页码:2950-2962 |
摘要 | Lithium metal is a promising anode material for high-energy-density batteries, but its application is hindered by safety concerns arising from dendrite growth. In this work, we propose a high-throughput workflow that combines quantum-mechanical simulations with machine learning to accurately predict self-assembled monolayers (SAMs) that can assemble an artificial inorganic-organic hybrid interphase layer on the Li-metal anode to enhance cycling stability and mitigate dendrite growth. The workflow comprises automatic data collection, first-principles simulations, and screening of candidate molecules using machine learning. We screened out 128 molecules from the PubChem database and identified the eight best candidates with low Li diffusion barriers and high mechanical stability. A structure-property relationship was established between the Li diffusion barrier and the structural characteristics of head, middle, and tail groups in the SAMs using simple quantum mechanical (QM) dipole and electrostatic potential descriptors. These results open new avenues for designing highly stable Li-metal anodes for practical use in Li-metal batteries. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Natural Science Foundation of Guangdong Province[2022A1515010076];Chinese Academy of Sciences[2022VEA0011];Chinese Academy of Sciences[2022VEA0016];Chinese Academy of Sciences[2022VEA0017];National Natural Science Foundation of China[52203303];National Natural Science Foundation of China[52220105010];Shenzhen Institutes of Advanced Technology Innovation Program for Excellent Young Researchers[E2G017];National Natural Science Foundation of China[M-0755];
|
WOS研究方向 | Materials Science
|
WOS类目 | Materials Science, Multidisciplinary
|
WOS记录号 | WOS:001073883100001
|
出版者 | |
EI入藏号 | 20233614674770
|
EI主题词 | Anodes
; Diffusion barriers
; Lithium
; Lithium batteries
; Machine learning
; Mechanical stability
; Quantum theory
; Self assembled monolayers
|
EI分类号 | Lithium and Alloys:542.4
; Alkali Metals:549.1
; Primary Batteries:702.1.1
; Electron Tubes:714.1
; Artificial Intelligence:723.4
; Atomic and Molecular Physics:931.3
; Quantum Theory; Quantum Mechanics:931.4
|
Scopus记录号 | 2-s2.0-85169448919
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/559627 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Multiscale Crystal Materials Research Center,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China 2.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.Helmut-Schmidt-University,University of the Armed Forces,Hamburg,22043,Germany |
推荐引用方式 GB/T 7714 |
Zhang,Qi,Zhou,Chuan,Zhang,Dantong,et al. Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode[J]. Matter,2023,6(9):2950-2962.
|
APA |
Zhang,Qi,Zhou,Chuan,Zhang,Dantong,Kramer,Denis,Peng,Chao,&Xue,Dongfeng.(2023).Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode.Matter,6(9),2950-2962.
|
MLA |
Zhang,Qi,et al."Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode".Matter 6.9(2023):2950-2962.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论