中文版 | English
题名

Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode

作者
通讯作者Peng,Chao; Xue,Dongfeng
发表日期
2023-09-06
DOI
发表期刊
ISSN
2590-2393
EISSN
2590-2385
卷号6期号:9页码:2950-2962
摘要
Lithium metal is a promising anode material for high-energy-density batteries, but its application is hindered by safety concerns arising from dendrite growth. In this work, we propose a high-throughput workflow that combines quantum-mechanical simulations with machine learning to accurately predict self-assembled monolayers (SAMs) that can assemble an artificial inorganic-organic hybrid interphase layer on the Li-metal anode to enhance cycling stability and mitigate dendrite growth. The workflow comprises automatic data collection, first-principles simulations, and screening of candidate molecules using machine learning. We screened out 128 molecules from the PubChem database and identified the eight best candidates with low Li diffusion barriers and high mechanical stability. A structure-property relationship was established between the Li diffusion barrier and the structural characteristics of head, middle, and tail groups in the SAMs using simple quantum mechanical (QM) dipole and electrostatic potential descriptors. These results open new avenues for designing highly stable Li-metal anodes for practical use in Li-metal batteries.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Natural Science Foundation of Guangdong Province[2022A1515010076];Chinese Academy of Sciences[2022VEA0011];Chinese Academy of Sciences[2022VEA0016];Chinese Academy of Sciences[2022VEA0017];National Natural Science Foundation of China[52203303];National Natural Science Foundation of China[52220105010];Shenzhen Institutes of Advanced Technology Innovation Program for Excellent Young Researchers[E2G017];National Natural Science Foundation of China[M-0755];
WOS研究方向
Materials Science
WOS类目
Materials Science, Multidisciplinary
WOS记录号
WOS:001073883100001
出版者
EI入藏号
20233614674770
EI主题词
Anodes ; Diffusion barriers ; Lithium ; Lithium batteries ; Machine learning ; Mechanical stability ; Quantum theory ; Self assembled monolayers
EI分类号
Lithium and Alloys:542.4 ; Alkali Metals:549.1 ; Primary Batteries:702.1.1 ; Electron Tubes:714.1 ; Artificial Intelligence:723.4 ; Atomic and Molecular Physics:931.3 ; Quantum Theory; Quantum Mechanics:931.4
Scopus记录号
2-s2.0-85169448919
来源库
Scopus
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559627
专题工学院_材料科学与工程系
作者单位
1.Multiscale Crystal Materials Research Center,Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen,518055,China
2.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Helmut-Schmidt-University,University of the Armed Forces,Hamburg,22043,Germany
推荐引用方式
GB/T 7714
Zhang,Qi,Zhou,Chuan,Zhang,Dantong,et al. Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode[J]. Matter,2023,6(9):2950-2962.
APA
Zhang,Qi,Zhou,Chuan,Zhang,Dantong,Kramer,Denis,Peng,Chao,&Xue,Dongfeng.(2023).Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode.Matter,6(9),2950-2962.
MLA
Zhang,Qi,et al."Data-driven discovery and intelligent design of artificial hybrid interphase layer for stabilizing lithium-metal anode".Matter 6.9(2023):2950-2962.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Qi]的文章
[Zhou,Chuan]的文章
[Zhang,Dantong]的文章
百度学术
百度学术中相似的文章
[Zhang,Qi]的文章
[Zhou,Chuan]的文章
[Zhang,Dantong]的文章
必应学术
必应学术中相似的文章
[Zhang,Qi]的文章
[Zhou,Chuan]的文章
[Zhang,Dantong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。