中文版 | English
题名

The Interaction of Talc, Montmorillonite, and Silica Sand with H2O Influences Methane Hydrate Formation

作者
通讯作者Huang,Ruifang
发表日期
2023-09-01
DOI
发表期刊
EISSN
1996-1073
卷号16期号:17
摘要
Methane hydrates in natural geological settings are commonly distributed within sediments, with a variety of minerals (such as silica sand, talc, and montmorillonite). The mechanisms that control the influence of sediments on methane hydrate formation remain poorly understood. In this study, we performed experiments on methane hydrate formation in pure HO with the addition of 3% sediments (montmorillonite, talc, and silica sand). A large-volume stirred reactor (80 mL) and a small-volume unstirred reactor (20 mL) were used. The results show that montmorillonite and talc severely inhibit methane hydrate formation. For experiments in the stirred reactor with pure HO, normalized gas consumption is 30 (mmol/mol) after 1000 min. In contrast, normalized gas consumption in experiments with the addition of 3% montmorillonite and talc decreases greatly to <5 (mmol/mol) over the same period. The inhibiting effect of montmorillonite and talc is closely associated with the release of cations (Mg, Ca, K, and Na) into fluids, with higher concentrations of cations for slower rates of methane hydrate formation. The interaction of montmorillonite and talc with HO consumes hydrogen ions (H), resulting in alkaline solutions. It was found that alkaline solutions may not be favorable for methane hydrate formation. In contrast, silica sand slightly promotes methane hydrate formation in the unstirred reactor, which may be related to acidic solutions formed during the interaction of silica sand with HO. The phase equilibrium temperatures and pressures of methane hydrate in the presence of 3% montmorillonite, talc, and silica sand are essentially the same as those in pure HO, excluding the thermodynamic effect of minerals. The experiments of this study are important for understanding the formation of massive methane hydrates with low amounts of sediment (e.g., ≤3%). They suggest that methane hydrates may not be highly concentrated in sediments with abundant talc and montmorillonite. The experiments of this study may explain the close association of methane hydrates with silica sand.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[K19313901];
WOS研究方向
Energy & Fuels
WOS类目
Energy & Fuels
WOS记录号
WOS:001064072900001
出版者
EI入藏号
20233714718539
EI主题词
Gas hydrates ; Hydration ; Methane ; Positive ions ; Sediments ; Silica ; Silica sand ; Talc
EI分类号
Minerals:482.2 ; Soil Mechanics and Foundations:483 ; Natural Gas Deposits:512.2 ; Gas Fuels:522 ; Organic Compounds:804.1
Scopus记录号
2-s2.0-85170554701
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/559637
专题前沿与交叉科学研究院
作者单位
1.CAS Key Laboratory of Ocean and Marginal Sea Geology,South China Sea Institute of Oceanology,Guangzhou,510301,China
2.SUSTech Academy for Advanced Interdisciplinary Studies,Southern University of Science and Technology,Shenzhen,518055,China
3.School of Environment,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位前沿与交叉科学研究院
通讯作者单位前沿与交叉科学研究院
推荐引用方式
GB/T 7714
Huang,Ruifang,Zhao,Yusheng,Ma,Yiming. The Interaction of Talc, Montmorillonite, and Silica Sand with H2O Influences Methane Hydrate Formation[J]. Energies,2023,16(17).
APA
Huang,Ruifang,Zhao,Yusheng,&Ma,Yiming.(2023).The Interaction of Talc, Montmorillonite, and Silica Sand with H2O Influences Methane Hydrate Formation.Energies,16(17).
MLA
Huang,Ruifang,et al."The Interaction of Talc, Montmorillonite, and Silica Sand with H2O Influences Methane Hydrate Formation".Energies 16.17(2023).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang,Ruifang]的文章
[Zhao,Yusheng]的文章
[Ma,Yiming]的文章
百度学术
百度学术中相似的文章
[Huang,Ruifang]的文章
[Zhao,Yusheng]的文章
[Ma,Yiming]的文章
必应学术
必应学术中相似的文章
[Huang,Ruifang]的文章
[Zhao,Yusheng]的文章
[Ma,Yiming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。